skip to main content

This content will become publicly available on June 26, 2023

Title: Advancing Student Success Through Integrated Sociocultural and Academic Intervention Strategies
Promoting equitable undergraduate engineering education is an overarching concern at many minority-serving institutions (MSI). In addition, historical analysis of student performance in lower-division math and engineering courses at one of the largest MSI revealed an achievement gap in performance between the underrepresented minority students and other students. Furthermore, critical analysis of underlying factors overwhelmingly suggests that academic intervention coupled with sociocultural intervention may be a possible solution to help address this problem. Academic and sociocultural intervention strategies were designed and implemented in lower-division math courses through the National Science Foundation-funded project, “Building Capacity: Advancing Student Success in Undergraduate Engineering and Computer Science (ASSURE-US).” These strategies involved application-based math courses targeted explicitly at undergraduate engineering students. Results of academic intervention strategies in the lower-division math courses at one of the largest MSI demonstrate mixed effectiveness. The results of the academic intervention in lower-division Calculus I (N=150) show that 36% of students reported that the intervention was helpful and helped them learn math, while 38% were neutral. Overall, students reported having difficulty connecting the projects with the mathematics being taught. Similarly, only 10% of students expressed satisfaction with the redesigned intervention modules implemented in Integral Calculus II (N=90), while 52% were neutral. more » The sociocultural interventions include activities facilitated through the Student-Teacher Interaction Council. These activities include motivational speakers, exam preparation and stress-relief workshop, campus resources and college financial planning workshops, peer advising and learning communities, summer research, and faculty development and support. Results of the sociocultural intervention strategies show that 39% of students reported that the ASSURE-US project helped them identify role models in their discipline, while 34% reported that the project helped them identify and connect to a mentor. Students also reported higher awareness of campus resources, including mental health resources and academic support, with 89% and 90% of students reporting fully or partial understanding of these resources. The academic and sociocultural interventions of the ASSURE-US project were initially designed for in-person, hands-on, project-based, and student-faculty-involved activities; however, due to the COVID-19 pandemic, many of these activities were reimagined and redesigned for virtual instruction. The outcomes of this project so far were significantly impacted by the pandemic. « less
Authors:
Award ID(s):
1832536
Publication Date:
NSF-PAR ID:
10358978
Journal Name:
Proceedings of the 2022 ASEE Annual Conference & Exposition
Sponsoring Org:
National Science Foundation
More Like this
  1. Promoting equitable undergraduate engineering education is an overarching concern at many minority-serving institutions (MSI). In addition, historical analysis of student performance in lower-division math and engineering courses at one of the largest MSI revealed an achievement gap in performance between the underrepresented minority students and other students. Furthermore, critical analysis of underlying factors overwhelmingly suggests that academic intervention coupled with sociocultural intervention may be a possible solution to help address this problem. Academic and sociocultural intervention strategies were designed and implemented in lower-division math courses through the National Science Foundation-funded project, “Building Capacity: Advancing Student Success in Undergraduate Engineering and Computer Science (ASSURE-US).” These strategies involved application-based math courses targeted explicitly at undergraduate engineering students. Results of academic intervention strategies in the lower-division math courses at one of the largest MSI demonstrate mixed effectiveness. The results of the academic intervention in lower-division Calculus I (N=150) show that 36% of students reported that the intervention was helpful and helped them learn math, while 38% were neutral. Overall, students reported having difficulty connecting the projects with the mathematics being taught. Similarly, only 10% of students expressed satisfaction with the redesigned intervention modules implemented in Integral Calculus II (N=90), while 52% were neutral.more »The sociocultural interventions include activities facilitated through the Student-Teacher Interaction Council. These activities include motivational speakers, exam preparation and stress-relief workshop, campus resources and college financial planning workshops, peer advising and learning communities, summer research, and faculty development and support. Results of the sociocultural intervention strategies show that 39% of students reported that the ASSURE-US project helped them identify role models in their discipline, while 34% reported that the project helped them identify and connect to a mentor. Students also reported higher awareness of campus resources, including mental health resources and academic support, with 89% and 90% of students reporting fully or partial understanding of these resources. The academic and sociocultural interventions of the ASSURE-US project were initially designed for in-person, hands-on, project-based, and student-faculty-involved activities; however, due to the COVID-19 pandemic, many of these activities were reimagined and redesigned for virtual instruction. The outcomes of this project so far were significantly impacted by the pandemic.« less
  2. Despite national efforts in increasing representation of minority students in STEM disciplines, disparities prevail. Hispanics account for 17.4% of the U.S. population, and nearly 20% of the youth population (21 years and below) in the U.S. is Hispanic, yet they account for just 7% of the STEM workforce. To tackle these challenges, the National Science Foundation (NSF) has granted a 5-year project – ASSURE-US, that seeks to improve undergraduate education in Engineering and Computer Science (ECS) at California State University, Fullerton. The project seeks to advance student success during the first two years of college for ECS students. Towards that goal, the project incorporates a very diverse set of approaches, such as socio-cultural and academic interventions. Multiple strategies including developing early intervention strategies in gateway STEM courses, creating a nurturing faculty-student interaction and collaborative learning environment, providing relevant, contextual-based learning experiences, integrating project-based learning with engineering design in lower-division courses, exposing lower-division students to research to sustain student interests, and helping students develop career-readiness skills. The project also seeks to develop an understanding of the personal, social, cognitive, and contextual factors contributing to student persistence in STEM learning that can be used by STEM faculty to improve their pedagogical andmore »student-interaction approaches. This paper summarizes the major approaches the ASSURE-US project plans to implement to reduce the achievement gap and motivate ECS students to remain in the program. Preliminary findings from the first-year implementation of the project including pre- and post- data were collected and analyzed from about one hundred freshmen and sophomore ECS students regarding their academic experience in lower-division classes and their feedback for various social support events held by the ASSURE-US project during the academic year 2018-19. The preliminary results obtained during the first year of ASSURE-US project suggests that among the different ASSURE-US activities implemented in the first year, both the informal faculty-student interactions and summer research experiences helped students commit more to their major during their lower-division years. The pre-post surveys also show improvements in terms of awareness among ASSURE-US students for obtaining academic support services, understanding career options and pathways, and obtaining personal counseling services.« less
  3. In this Work-in-Progress paper, we report on the challenges and successes of a large-scale First- Year Engineering and Computer Science Program at an urban comprehensive university, using quantitative and qualitative assessment results. Large-scale intervention programs are especially relevant to comprehensive minority serving institutions (MSIs) that serve a high percentage of first-generation college students who often face academic and socioeconomic barriers. Our program was piloted in 2015 with 30 engineering students, currently enrolls 60 engineering and computer science students, and is expected to grow to over 200 students by Fall 2020. The firstyear program interventions include: (i) block schedules for each cohort in the first year; (ii) redesigned project-based introduction to engineering and introduction to computer science courses; (iii) an introduction to mechanics course, which provides students with the foundation needed to succeed in the traditional physics sequence; and (iv) peer-led supplemental instruction (SI) workshops for Calculus, Physics and Chemistry. A faculty mentorship program was implemented to provide additional support to students, but was phased out after the first year. Challenges encountered in the process of expanding the program include administrative, such as scheduling and training faculty and SI leaders; barriers to improvement of math and science instruction; and more holisticmore »concerns such as creating a sense of community and identity for the program. Quantitative data on academic performance includes metrics such as STEM GPA and persistence, along with the Force Concept Inventory (FCI) for physics. Qualitative assessments of the program have used student and instructor surveys, focus groups, and individual interviews to measure relationships among factors associated with college student support and to extract student perspectives on what works best for them. Four years of data tell a mixed story, in which the qualitative effect of the interventions on student confidence and identity is strong, while academic performance is not yet significantly different than that of comparison groups. One of the most significant results of the program is the development of a FYrE Professional Learning Community which includes faculty (both tenure-track and adjunct), department chairs, staff, and administrators from across the campus.« less
  4. There is a critical need for more students with engineering and computer science majors to enter into, persist in, and graduate from four-year postsecondary institutions. Increasing the diversity of the workforce by inclusive practices in engineering and science is also a profound identified need. According to national statistics, the largest groups of underrepresented minority students in engineering and science attend U.S. public higher education institutions. Most often, a large proportion of these students come to colleges and universities with unique challenges and needs, and are more likely to be first in their family to attend college. In response to these needs, engineering education researchers and practitioners have developed, implemented and assessed interventions to provide support and help students succeed in college, particularly in their first year. These interventions typically target relatively small cohorts of students and can be managed by a small number of faculty and staff. In this paper, we report on “work in progress” research in a large-scale, first-year engineering and computer science intervention program at a public, comprehensive university using multivariate comparative statistical approaches. Large-scale intervention programs are especially relevant to minority serving institutions that prepare growing numbers of students who are first in their family tomore »attend college and who are also under-resourced, financially. These students most often encounter academic difficulties and come to higher education with challenging experiences and backgrounds. Our studied first-year intervention program, first piloted in 2015, is now in its 5th year of implementation. Its intervention components include: (a) first-year block schedules, (b) project-based introductory engineering and computer science courses, (c) an introduction to mechanics course, which provides students with the foundation needed to succeed in a traditional physics sequence, and (d) peer-led supplemental instruction workshops for calculus, physics and chemistry courses. This intervention study responds to three research questions: (1) What role does the first-year intervention’s components play in students’ persistence in engineering and computer science majors across undergraduate program years? (2) What role do particular pedagogical and cocurricular support structures play in students’ successes? And (3) What role do various student socio-demographic and experiential factors play in the effectiveness of first-year interventions? To address these research questions and therefore determine the formative impact of the firstyear engineering and computer science program on which we are conducting research, we have collected diverse student data including grade point averages, concept inventory scores, and data from a multi-dimensional questionnaire that measures students’ use of support practices across their four to five years in their degree program, and diverse background information necessary to determine the impact of such factors on students’ persistence to degree. Background data includes students’ experiences prior to enrolling in college, their socio-demographic characteristics, and their college social capital throughout their higher education experience. For this research, we compared students who were enrolled in the first-year intervention program to those who were not enrolled in the first-year intervention. We have engaged in cross-sectional 2 data collection from students’ freshman through senior years and employed multivariate statistical analytical techniques on the collected student data. Results of these analyses were interesting and diverse. Generally, in terms of backgrounds, our research indicates that students’ parental education is positively related to their success in engineering and computer science across program years. Likewise, longitudinally (across program years), students’ college social capital predicted their academic success and persistence to degree. With regard to the study’s comparative research of the first-year intervention, our results indicate that students who were enrolled in the first-year intervention program as freshmen continued to use more support practices to assist them in academic success across their degree matriculation compared to students who were not in the first-year program. This suggests that the students continued to recognize the value of such supports as a consequence of having supports required as first-year students. In terms of students’ understanding of scientific or engineering-focused concepts, we found significant impact resulting from student support practices that were academically focused. We also found that enrolling in the first-year intervention was a significant predictor of the time that students spent preparing for classes and ultimately their grade point average, especially in STEM subjects across students’ years in college. In summary, we found that the studied first-year intervention program has longitudinal, positive impacts on students’ success as they navigate through their undergraduate experiences toward engineering and computer science degrees.« less
  5. Access to lower-division engineering courses in the community college substantially influences whether or not community college students pursue and successfully achieve an engineering degree. With about 60% of students from under-represented minority (URM) groups beginning their post-secondary education in the community colleges, providing this access is critical if the US is to diversify and expand its engineering workforce. Still many community college lack the faculty, equipment, or local expertise to offer a comprehensive transfer engineering program, thus compromising participation in engineering courses for underrepresented groups as well as for students residing in rural and remote areas, where distance is a key barrier to post-secondary enrollment. An additional obstacle to participation is the need for so many community college students to work, many in inflexible positions that compromise their ability to attend traditional face-to-face courses. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of the engineering curriculum by developing resources and teaching strategies to enable small-to-medium community college engineering programs to support a comprehensive set of lower-division engineering courses that are delivered either completely online, or with limited face-to-face interactions. Thismore »paper focuses on the development and testing of the teaching and learning resources for Introduction to Engineering, a three-unit course (two units of lecture and one unit of lab). The course has special significance as a gateway course for students who without the role models that their middle class peers so often have readily available enter college with very limited awareness of the exciting projects and fulfilling careers the engineering profession offers as well as with apprehension about their ability to succeed in a demanding STEM curriculum. To this end, the course covers academic success skills in engineering including mindset and metacognition, academic pathways, career awareness and job functions in the engineering profession, team building and communications, the engineering design process, and a broad range of fundamental and engaging topics and projects in engineering including electronics, basic test equipment, programming in MATLAB and Arduino, robotics, bridge design, and materials science. The paper presents the results of a pilot implementation of the teaching materials in a regular face-to-face course which will be used to inform subsequent on-line delivery. Additionally, student surveys and interviews are used to assess students’ perceptions of the effectiveness of the course resources, along with their sense of self-efficacy and identity as aspiring engineers.« less