Background: In the US, obesity is an epidemiologic challenge and the population fails to comprehend this complex public health issue. To evaluate underlying obesity-impact patterns on mortality rates, we data-mined the 1999-2016 Center for Disease Control WONDER database’s vital records.Methods: Adopting SAS programming, we scrutinized the mortality and population counts. Using ICD-10 diagnosis codes connected to overweight and obesity, we obtained the obesity-related crude and age-adjusted causes of death. To understand divergent and prevalence trends we compared and contrasted the tabulated obesity-influenced mortality rates with demographic information, gender, and age-related data.Key Results: From 1999 to 2016, the obesity-related age-adjusted mortality rates increased by 142%. The ICD-10 overweight and obesity-related death-certificate coding showed clear evidence that obesity factored in the male age-adjusted mortality rate increment to 173% and the corresponding female rate to 117%. It also disproportionately affected the nation-wide minority population death rates. Furthermore, excess weight distributions are coded as contributing features in the crude death rates for all decennial age-groups.Conclusions: The 1999-2016 data from ICD-10 death certificate coding for obesity-related conditions indicate that it is affecting all segments of the US population. 
                        more » 
                        « less   
                    
                            
                            Data-intensive Undergraduate Research Project Informs to Advance Healthcare Analytics
                        
                    
    
            The overarching framework for incorporating informatics into the Wesley College (Wesley) undergraduate curriculum was to teach emerging information technologies that prepared undergraduates for complex high-demand work environments. Federal and State support helped implement Wesley’s undergraduate Informatics Certificate and Minor programs. Both programs require project-based coursework in Applied Statistics, SAS Programming, and Geo-spatial Analysis (ArcGIS). In 2015, the State of Obesity listed the obesity ranges for all 50 US States to be between 21–36%. Yet, the Center for Disease Control and Prevention (CDC) mortality records show significantly lower obesity-related death-rates for states with very high obesity-rates. This study highlights the disparities in the reported obesity-related death-rates (specified by an ICD-10 E66 diagnosis code) and the obesity-rate percentages recorded for all 50 US States. Using CDC mortality-rate data, the available obesity-rate information, and ArcGIS, we created choropleth maps for all US States. Visual and statistical analysis shows considerable disparities in the obesity-related death-rate record-keeping amongst the 50 US States. For example, in 2015, Vermont with the sixth lowest obesity-rate had the highest reported obesity-related death-rate. In contrast, Alabama had the fifth highest adult obesity-rate in the nation, yet, it had a very low age-adjusted mortality-rate. Such disparities make comparative analysis difficult. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1757353
- PAR ID:
- 10100278
- Date Published:
- Journal Name:
- 2018 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)
- Page Range / eLocation ID:
- 1 to 8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Older adults are especially vulnerable to disasters due to high rates of chronic illness, disability, and social isolation. Limited research examines how gender, race/ethnicity, and forces of nature—defined here as different types of natural hazards, such as storms and earthquakes—intersect to shape older adults’ disaster-related mortality risk. We compare mortality rates among older adults (60+ years) in the United States across gender, race/ethnicity, and hazard type using the Centers for Disease Control and Prevention’s Wonder database. Our results demonstrate that older adult males have higher mortality rates than females. American Indian/Alaska Native (AI/AN) males have the highest mortality and are particularly impacted by excessive cold. Mortality is also high among Black males, especially due to cataclysmic storms. To address disparities, messaging and programs targeting the dangers of excessive cold should be emphasized for AI/AN older adult males, whereas efforts to reduce harm from cataclysmic storms should target Black older adult males.more » « less
- 
            Introduction: Coronavirus disease 2019 (COVID-19) has had a profound impact globally, causing the death of millions of people and deeply affecting socio-psychological, human health, and economic systems, with some nations bearing a disproportionate burden. Despite obesity having been established as one of the major risk factors of COVID-19 severity and other degenerative diseases, the effects that dietary pattern plays in COVID-19 outcomes remain poorly understood. The goal of this study is to look into the connection between eating habits, the number of non-obese and obese people, and COVID-19 outcomes in countries with populations exhibiting normal Body Mass Index (BMI), which is an indicator of obesity. Methods: The analysis includes data from 170 countries. From the 170 countries, we focused on 53 nations where the average, BMI falls within the normal range (18.5 to 24.9). A subset of 20 nations was selected for a more detailed examination, comprising 10 nations with the lowest BMI values within the normal range (18.5-19.8) and 10 nations with the highest BMI values within the normal range (23.5-24.9). We used Artificial Intelligence (AI) and Machine Learning (ML) applications to evaluate key metrics, including dietary patterns (sugar and vegetable intake), obesity prevalence, incidence rate, mortality rate, and Case Fatality Rate (CFR). Results: The results demonstrate a significant correlation between higher obesity prevalence and increased COVID-19 severity, evidenced by elevated incidence, mortality, and CFRs in countries like North Macedonia and Italy. In contrast, nations such as Iceland and New Zealand with well-established healthcare systems revealed low mortality rates and case fatality rates despite variations in dietary habits. The study also revealed that vegetable consumption appears to provide a slight to significant protective effect, suggesting that dietary patterns alone do not consistently predict COVID-19 Outcomes. Conclusion: Data generated from this study showed the crucial role of healthcare infrastructure along with the testing capacity and data reporting in influencing the success of pandemic responses. It also highlights the need to integrate public health strategies, which focus on obesity management and improvement of healthcare preparedness. In addition, AI-driven predictive modeling offers valuable insights that may guide pandemic response efforts in the future, thereby enhancing global health crisis management and mitigating the impact of future health emergencies.more » « less
- 
            Abstract CDC WONDER is a web-based tool for the dissemination of epidemiologic data collected by the National Vital Statistics System. While CDC WONDER has built-in privacy protections, they do not satisfy formal privacy protections such as differential privacy and thus are susceptible to targeted attacks. Given the importance of making high-quality public health data publicly available while preserving the privacy of the underlying data subjects, we aim to improve the utility of a recently developed approach for generating Poisson-distributed, differentially private synthetic data by using publicly available information to truncate the range of the synthetic data. Specifically, we utilize county-level population information from the US Census Bureau and national death reports produced by the CDC to inform prior distributions on county-level death rates and infer reasonable ranges for Poisson-distributed, county-level death counts. In doing so, the requirements for satisfying differential privacy for a given privacy budget can be reduced by several orders of magnitude, thereby leading to substantial improvements in utility. To illustrate our proposed approach, we consider a dataset comprised of over 26,000 cancer-related deaths from the Commonwealth of Pennsylvania belonging to over 47,000 combinations of cause-of-death and demographic variables such as age, race, sex, and county-of-residence and demonstrate the proposed framework’s ability to preserve features such as geographic, urban/rural, and racial disparities present in the true data.more » « less
- 
            Importance Prior research has established that Hispanic and non-Hispanic Black residents in the US experienced substantially higher COVID-19 mortality rates in 2020 than non-Hispanic White residents owing to structural racism. In 2021, these disparities decreased. Objective To assess to what extent national decreases in racial and ethnic disparities in COVID-19 mortality between the initial pandemic wave and subsequent Omicron wave reflect reductions in mortality vs other factors, such as the pandemic’s changing geography. Design, Setting, and Participants This cross-sectional study was conducted using data from the US Centers for Disease Control and Prevention for COVID-19 deaths from March 1, 2020, through February 28, 2022, among adults aged 25 years and older residing in the US. Deaths were examined by race and ethnicity across metropolitan and nonmetropolitan areas, and the national decrease in racial and ethnic disparities between initial and Omicron waves was decomposed. Data were analyzed from June 2021 through March 2023. Exposures Metropolitan vs nonmetropolitan areas and race and ethnicity. Main Outcomes and Measures Age-standardized death rates. Results There were death certificates for 977 018 US adults aged 25 years and older (mean [SD] age, 73.6 [14.6] years; 435 943 female [44.6%]; 156 948 Hispanic [16.1%], 140 513 non-Hispanic Black [14.4%], and 629 578 non-Hispanic White [64.4%]) that included a mention of COVID-19. The proportion of COVID-19 deaths among adults residing in nonmetropolitan areas increased from 5944 of 110 526 deaths (5.4%) during the initial wave to a peak of 40 360 of 172 515 deaths (23.4%) during the Delta wave; the proportion was 45 183 of 210 554 deaths (21.5%) during the Omicron wave. The national disparity in age-standardized COVID-19 death rates per 100 000 person-years for non-Hispanic Black compared with non-Hispanic White adults decreased from 339 to 45 deaths from the initial to Omicron wave, or by 293 deaths. After standardizing for age and racial and ethnic differences by metropolitan vs nonmetropolitan residence, increases in death rates among non-Hispanic White adults explained 120 deaths/100 000 person-years of the decrease (40.7%); 58 deaths/100 000 person-years in the decrease (19.6%) were explained by shifts in mortality to nonmetropolitan areas, where a disproportionate share of non-Hispanic White adults reside. The remaining 116 deaths/100 000 person-years in the decrease (39.6%) were explained by decreases in death rates in non-Hispanic Black adults. Conclusions and Relevance This study found that most of the national decrease in racial and ethnic disparities in COVID-19 mortality between the initial and Omicron waves was explained by increased mortality among non-Hispanic White adults and changes in the geographic spread of the pandemic. These findings suggest that despite media reports of a decline in disparities, there is a continued need to prioritize racial health equity in the pandemic response.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    