skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning Trajectories for Real- Time Optimal Control of Quadrotors
Nonlinear optimal control problems are challenging to solve efficiently due to non-convexity. This paper introduces a trajectory optimization approach that achieves real-time performance by combining machine learning to predict optimal trajectories with refinement by quadratic optimization. First, a library of optimal trajectories is calculated offline and used to train a neural network. Online, the neural network predicts a trajectory for a novel initial state and cost function, and this prediction is further optimized by a sparse quadratic programming solver. We apply this approach to a fly-to-target movement problem for an indoor quadrotor. Experiments demonstrate that the technique calculates near-optimal trajectories in a few milliseconds, and generates agile movement that can be tracked more accurately than existing methods.  more » « less
Award ID(s):
1816540 2002492
PAR ID:
10100589
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE/RSJ Intl Conf on Intelligent Robots and Systems
Page Range / eLocation ID:
3620 to 3625
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper introduces LeTO, a method for learning constrained visuomotor policy with differentiable trajectory optimization. Our approach integrates a differentiable optimization layer into the neural network. By formulating the optimization layer as a trajectory optimization problem, we enable the model to end-to-end generate actions in a safe and constraint-controlled fashion without extra modules. Our method allows for the introduction of constraint information during the training process, thereby balancing the training objectives of satisfying constraints, smoothing the trajectories, and minimizing errors with demonstrations. This “gray box” method marries optimization-based safety and interpretability with powerful representational abilities of neural networks. We quantitatively evaluate LeTO in simulation and in the real robot. The results demonstrate that LeTO performs well in both simulated and real-world tasks. In addition, it is capable of generating trajectories that are less uncertain, higher quality, and smoother compared to existing imitation learning methods. Therefore, it is shown that LeTO provides a practical example of how to achieve the integration of neural networks with trajectory optimization. We release our code at https://github.com/ZhengtongXu/LeTO. 
    more » « less
  2. Considering the growing demand of real-time motion planning in robot applications, this paper proposes a fast robot motion planner (FRMP) to plan collision-free and time-optimal trajectories, which applies the convex feasible set algorithm (CFS) to solve both the trajectory planning problem and the temporal optimization problem. The performance of CFS in trajectory planning is compared to the sequential quadratic programming (SQP) in simulation, which shows a significant decrease in iteration numbers and computation time to converge a solution. The effectiveness of temporal optimization is shown on the operational time reduction in the experiment on FANUC LR Mate 200iD/7L. 
    more » « less
  3. The proposed approach, BJORK, provides a robust and generalizable workflow to jointly optimize non-Cartesian sampling patters and a physics-informed reconstruction. Several approaches, including re-parameterization of trajectories, multi-level optimization, and non-Cartesian unrolled neural networks, are introduced to improve training effect and avoid sub-optimal local minima. The invivo experiments show that the networks and trajectories learned on simulation dataset are transferable to the real acquisition even with different parameter-weighted MRI contrasts and noise-levels, and demonstrate improved image quality compared with previous learning-based and model-based trajectory optimization methods. 
    more » « less
  4. Learned movements can be skillfully performed at different paces. What neural strategies produce this flexibility? Can they be predicted and understood by network modeling? We trained monkeys to perform a cycling task at different speeds, and trained artificial recurrent networks to generate the empirical muscle-activity patterns. Network solutions reflected the principle that smooth well-behaved dynamics require low trajectory tangling. Network solutions had a consistent form, which yielded quantitative and qualitative predictions. To evaluate predictions, we analyzed motor cortex activity recorded during the same task. Responses supported the hypothesis that the dominant neural signals reflect not muscle activity, but network-level strategies for generating muscle activity. Single-neuron responses were better accounted for by network activity than by muscle activity. Similarly, neural population trajectories shared their organization not with muscle trajectories, but with network solutions. Thus, cortical activity could be understood based on the need to generate muscle activity via dynamics that allow smooth, robust control over movement speed. 
    more » « less
  5. Robust trajectory execution is an extension of cooperative collision avoidance that takes pre-planned trajectories directly into account. We propose an algorithm for robust trajectory execution that compensates for a variety of dynamic changes, including newly appearing obstacles, robots breaking down, imperfect motion execution, and external disturbances. Robots do not communicate with each other and only sense other robots’ positions and the obstacles around them. At the high-level we use a hybrid planning strategy employing both discrete planning and trajectory optimization with a dynamic receding horizon approach. The discrete planner helps to avoid local minima, adjusts the planning horizon, and provides good initial guesses for the optimization stage. Trajectory optimization uses a quadratic programming formulation, where all safety-critical parts are formulated as hard constraints. At the low-level, we use buffered Voronoi cells as a multi-robot collision avoidance strategy. Compared to ORCA, our approach supports higher-order dynamic limits and avoids deadlocks better. We demonstrate our approach in simulation and on physical robots, showing that it can operate in real time. 
    more » « less