skip to main content

Title: An Introduction to the CLICK Approach: Leveraging Virtual Reality to Integrate the Industrial Engineering Curriculum
This work introduces a new approach called Connected Learning and Integrated Course Knowledge (CLICK). CLICK is intended to provide an integrative learning experience by leveraging Virtual Reality (VR) technology to help provide a theme to connect and transfer the knowledge of engendering concepts. Integrative learning is described as the process of creating connections between concepts (i.e., skill and knowledge) from different resources and experiences, linking theory and practice, and using a variation of platforms to help students’ understanding. In the CLICK approach, the integration is achieved by VR learning modules that serve as a platform for a common theme and include various challenges and exercises from multiple courses across the IE curriculum. Moreover, the modules will provide an immersive and realistic experience, which the authors hypothesize, will improve how the students relate what they learn in a classroom, to real-life experiences. The goals of the CLICK approach are to (i) provide the needed connection between courses and improve students’ learning, and (ii) provide the needed linkage between theory and practice through a realistic representation of systems using VR. This work presents the results from an initial usability test performed on one of the VR modules. The results from the usability test indicate that more » participants liked the realism of the VR module. However, there are still some areas for improvement, and future work will focus on assessing the impact of the CLICK approach on students’ learning, motivation, and preparation to be successful engineers, areas which could translate to a STEM pipeline for the future workforce. « less
Authors:
; ;
Award ID(s):
1834465
Publication Date:
NSF-PAR ID:
10100639
Journal Name:
ASEE annual conference & exposition
ISSN:
2153-5965
Sponsoring Org:
National Science Foundation
More Like this
  1. The objective of this work is to present an initial investigation of the impact the Connected Learning and Integrated Course Knowledge (CLICK) approach has had on students’ motivation, engineering identity, and learning outcomes. CLICK is an approach that leverages Virtual Reality (VR) technology to provide an integrative learning experience in the Industrial Engineering (IE) curriculum. To achieve this integration, the approach aims to leverage VR learning modules to simulate a variety of systems. The VR learning modules offer an immersive experience and provide the context for real-life applications. The virtual simulated system represents a theme to transfer the system conceptsmore »and knowledge across multiple IE courses as well as connect the experience with real-world applications. The CLICK approach has the combined effect of immersion and learning-by-doing benefits. In this work, VR learning modules are developed for a simulated manufacturing system. The modules teach the concepts of measures of location and dispersion, which are used in an introductory probability course within the IE curriculum. This work presents the initial results of comparing the motivation, engineering identity, and knowledge gain between a control and an intervention group (i.e., traditional vs. CLICK teaching groups). The CLICK approach group showed greater motivation compared to a traditional teaching group. However, there were no effects on engineering identity and knowledge gain. Nevertheless, it is hypothesized that the VR learning modules will have a positive impact on the students’ motivation, engineering identity, and knowledge gain over the long run and when used across the curriculum. Moreover, IE instructors interested in providing an immersive and integrative learning experience to their students could leverage the VR learning modules developed for this project.« less
  2. A solid understanding of electromagnetic (E&M) theory is key to the education of electrical engineering students. However, these concepts are notoriously challenging for students to learn, due to the difficulty in grasping abstract concepts such as the electric force as an invisible force that is acting at a distance, or how electromagnetic radiation is permeating and propagating in space. Building physical intuition to manipulate these abstractions requires means to visualize them in a three-dimensional space. This project involves the development of 3D visualizations of abstract E&M concepts in Virtual Reality (VR), in an immersive, exploratory, and engaging environment. VR providesmore »the means of exploration, to construct visuals and manipulable objects to represent knowledge. This leads to a constructivist way of learning, in the sense that students are allowed to build their own knowledge from meaningful experiences. In addition, the VR labs replace the cost of hands-on labs, by recreating the experiments and experiences on Virtual Reality platforms. The development of the VR labs for E&M courses involves four distinct phases: (I) Lab Design, (II) Experience Design, (III) Software Development, and (IV) User Testing. During phase I, the learning goals and possible outcomes are clearly defined, to provide context for the VR laboratory experience, and to identify possible technical constraints pertaining to the specific laboratory exercise. During stage II, the environment (the world) the player (user) will experience is designed, along with the foundational elements, such as ways of navigation, key actions, and immersion elements. During stage III, the software is generated as part of the course projects for the Virtual Reality course taught in the Computer Science Department at the same university, or as part of independent research projects involving engineering students. This reflects the strong educational impact of this project, as it allows students to contribute to the educational experiences of their peers. During phase IV, the VR experiences are played by different types of audiences that fit the player type. The team collects feedback and if needed, implements changes. The pilot VR Lab, introduced as an additional instructional tool for the E&M course during the Fall 2019, engaged over 100 students in the program, where in addition to the regular lectures, students attended one hour per week in the E&M VR lab. Student competencies around conceptual understanding of electromagnetism topics are measured via formative and summative assessments. To evaluate the effectiveness of VR learning, each lab is followed by a 10-minute multiple-choice test, designed to measure conceptual understanding of the various topics, rather than the ability to simply manipulate equations. This paper discusses the implementation and the pedagogy of the Virtual Reality laboratory experiences to visualize concepts in E&M, with examples for specific labs, as well as challenges, and student feedback with the new approach. We will also discuss the integration of the 3D visualizations into lab exercises, and the design of the student assessment tools used to assess the knowledge gain when the VR technology is employed.« less
  3. International collaborations for community colleges are important for students who will be competing for employment yet are often overlooked due to the perception that international means expensive. The International Education Initiative (IEI) provides opportunities for international collaboration among community college faculty and students. The IEI is a multi-tiered program that allows different levels of participation and cost for faculty and students through funding from the National Science Foundation Advanced Technological Education Program and the French Embassy in the United States. While the main focus is engineering and technology courses, partners have also included business and communications classes, creating a trulymore »interdisciplinary program. Students participating in these programs can expect to have greater cross-cultural maturity and awareness of the wider world, increased confidence in finding future success in the global workforce, and increased ability to deploy 21st Century skills such as technology and teamwork. Faculty participating in the program can expect to have increased confidence and skills in faculty to support students in achieving 21st century skills; increased ability to co-teach and work effectively with and overseas partner, and more motivation and readiness to sustain overseas partnerships and help grow the international program. The Connecticut Collaborative Learning for International Capabilities and Knowledge (CT CLICKs) provides the opportunity for students to receive a global experience as part of a course they are already taking. During the first year of the program, Faculty from Connecticut community colleges partnered with faculty from French Insitituts universitaires de technologie (IUTs), French equivalent of community colleges, to co-teach curriculum modules to their participating classes. The second year added the option of co-facilitating a project between the two classes. All teaching, assignments, and projects were completed through virtual platforms. Several travel opportunities have been provided for student and faculty participants. These have either been through the attendance of international technology bootcamps that were organized by the French Embassy or a partner IUT or through a travel program organized by the IEI. Both travel options include experiences that provide an overview of French engineering and technology education, industry, history, and culture. A faculty recruitment and preparation model has been created to continuously onboard new faculty for the IEI program. The model includes a program overview workshop, partner matching, and curriculum design workshop that all take place virtually. The CT CLICKs program has built steadily and quickly. The number of teachers participating grew from 6 to 29 in the first three years with more than 6 teachers repeating or developing new modules. A total of 334 students have participated in the CT CLICKs program since fall 2017. The number of Connecticut campuses grew from 1 to 8 and overseas partner campuses grew from 2 to 5. Participant survey data shows that the program is continuously improving in helping students gain a better worldview and how to collaborate cross-culturally and helping faculty incorporate international collaboration into their courses.« less
  4. International collaborations for community colleges are important for students who will be competing for employment yet are often overlooked due to the perception that international means expensive. The International Education Initiative (IEI) provides opportunities for international collaboration among community college faculty and students. The IEI is a multi-tiered program that allows different levels of participation and cost for faculty and students through funding from the National Science Foundation Advanced Technological Education Program and the French Embassy in the United States. While the main focus is engineering and technology courses, partners have also included business and communications classes, creating a trulymore »interdisciplinary program. Students participating in these programs can expect to have greater cross-cultural maturity and awareness of the wider world, increased confidence in finding future success in the global workforce, and increased ability to deploy 21st Century skills such as technology and teamwork. Faculty participating in the program can expect to have increased confidence and skills in faculty to support students in achieving 21st century skills; increased ability to co-teach and work effectively with and overseas partner, and more motivation and readiness to sustain overseas partnerships and help grow the international program. The Connecticut Collaborative Learning for International Capabilities and Knowledge (CT CLICKs) provides the opportunity for students to receive a global experience as part of a course they are already taking. During the first year of the program, Faculty from Connecticut community colleges partnered with faculty from French Insitituts universitaires de technologie (IUTs), French equivalent of community colleges, to co-teach curriculum modules to their participating classes. The second year added the option of co-facilitating a project between the two classes. All teaching, assignments, and projects were completed through virtual platforms. Several travel opportunities have been provided for student and faculty participants. These have either been through the attendance of international technology bootcamps that were organized by the French Embassy or a partner IUT or through a travel program organized by the IEI. Both travel options include experiences that provide an overview of French engineering and technology education, industry, history, and culture. A faculty recruitment and preparation model has been created to continuously onboard new faculty for the IEI program. The model includes a program overview workshop, partner matching, and curriculum design workshop that all take place virtually. The CT CLICKs program has built steadily and quickly. The number of teachers participating grew from 6 to 29 in the first three years with more than 6 teachers repeating or developing new modules. A total of 334 students have participated in the CT CLICKs program since fall 2017. The number of Connecticut campuses grew from 1 to 8 and overseas partner campuses grew from 2 to 5. Participant survey data shows that the program is continuously improving in helping students gain a better worldview and how to collaborate cross-culturally and helping faculty incorporate international collaboration into their courses.« less
  5. International collaborations for community colleges are important for students who will be competing for employment yet are often overlooked due to the perception that international means expensive. The International Education Initiative (IEI) provides opportunities for international collaboration among community college faculty and students. The IEI is a multi-tiered program that allows different levels of participation and cost for faculty and students through funding from the National Science Foundation Advanced Technological Education Program and the French Embassy in the United States. While the main focus is engineering and technology courses, partners have also included business and communications classes, creating a trulymore »interdisciplinary program. Students participating in these programs can expect to have greater cross-cultural maturity and awareness of the wider world, increased confidence in finding future success in the global workforce, and increased ability to deploy 21st Century skills such as technology and teamwork. Faculty participating in the program can expect to have increased confidence and skills in faculty to support students in achieving 21st century skills; increased ability to co-teach and work effectively with and overseas partner, and more motivation and readiness to sustain overseas partnerships and help grow the international program. The Connecticut Collaborative Learning for International Capabilities and Knowledge (CT CLICKs) provides the opportunity for students to receive a global experience as part of a course they are already taking. During the first year of the program, Faculty from Connecticut community colleges partnered with faculty from French Insitituts universitaires de technologie (IUTs), French equivalent of community colleges, to co-teach curriculum modules to their participating classes. The second year added the option of co-facilitating a project between the two classes. All teaching, assignments, and projects were completed through virtual platforms. Several travel opportunities have been provided for student and faculty participants. These have either been through the attendance of international technology bootcamps that were organized by the French Embassy or a partner IUT or through a travel program organized by the IEI. Both travel options include experiences that provide an overview of French engineering and technology education, industry, history, and culture. A faculty recruitment and preparation model has been created to continuously onboard new faculty for the IEI program. The model includes a program overview workshop, partner matching, and curriculum design workshop that all take place virtually. The CT CLICKs program has built steadily and quickly. The number of teachers participating grew from 6 to 29 in the first three years with more than 6 teachers repeating or developing new modules. A total of 334 students have participated in the CT CLICKs program since fall 2017. The number of Connecticut campuses grew from 1 to 8 and overseas partner campuses grew from 2 to 5. Participant survey data shows that the program is continuously improving in helping students gain a better worldview and how to collaborate cross-culturally and helping faculty incorporate international collaboration into their courses.« less