Laboratory experience is among the key components in engineering education. It is highly instrumental and plays a significant role in students’ knowledge building, application, and distribution. Learning in laboratories is interactive and often collaborative. On the other hand, students, who learn engineering through online mechanisms, may face challenges with labs, which were frequently documented during the recent pandemic. To address such challenges, innovative online lab learning modules were developed, and learning strategies were implemented in five courses in electrical engineering, Circuits I, Electronics I, Electronics II, Signals and Systems, and Embedded System, through which students gain solid foundation before advancing to senior design projects.
The two main incorporated strategies were Open-Ended lab design and Teamwork implementation. Open-Ended lab modules using a lab-in-a-box approach allow students solving lab problems with multiple approaches fostering problem solving both independently and collaboratively. This innovative lab design promotes problem solving at various cognitive levels. It is better suited for concept exploration and collaborative lab learning environments as opposed to the traditional lab works with a prescribed approach leading students to follow certain procedures that may lack the problem exploration stage. Additionally, course instructors formed online lab groups, so that students were sharing the problem-solving process – from ideas formation to solutions – with their peers.
To evaluate the effectiveness of the implemented lab strategies, students in the participating courses were randomly divided into experimental and control groups. Both assignment grades and students' feedback via surveys were used to evaluate students' learning. Participants in the control group were learning in labs through the materials that were aligned
with core concepts by following predetermined procedures. Students in the experimental group learned through inquiry-based lab materials that required them to work in teams by integrating core concepts together to find a solution and while following one of potentially many approaches. To maximize the online lab learning effect and to replicate the contemporary
industry, commerce, and research practices, instructor-structured cooperative learning strategies were applied along with pre-lab simulations and instructional videos.
This paper showcases the outcomes of our 2nd year implementation of active learning laboratory strategies on the mixed population of online and face-to-face students. We observed that students in the experimental group generally outperformed their counterparts in labs and showed significantly higher results in the assignments addressing more advanced concept
understanding and applications (grand average of 88.3% vs. 66.3%). Surveys also indicated that students saw the benefits of collaboration with Open-Ended lab modules not only for learning concepts, but also for improving their communication skills. Students were able to collaborate on lab problems through various communication tools, such as course Learning Management System (LMS) and mobile apps forming online learning communities.
We believe that that the implementation of open-ended collaborative laboratory strategies can assist students in cultivating a deeper comprehension, fostering self-confidence, and refining their critical thinking abilities, all while strengthening their sense of inclusion within the field of engineering.
more »
« less
Board 208: Achieving Active Learning through Collaborative Online Lab Experiences
In engineering education, laboratory learning that is well aligned with core content knowledge is instrumental as it plays a significant role in students’ knowledge construction, application, and distribution. Learning in laboratories is interactive in nature, and therefore students who learn engineering through online platforms can face many challenges with labs, which were frequently documented during the recent pandemic. To address those reported challenges, innovative online lab learning modules were developed and learning strategies were implemented in five courses in electrical engineering, Circuits I, Electronics I, Electronics II, Signals and Systems, and Microcomputers I, through which students gain solid foundation before students take on senior design projects.
Lab modules with open-ended design learning experience through using a lab-in-a-box approach were developed to allow students to solve lab problems with multiple approaches that allow problem solving independently and collaboratively. Because this innovative lab design allows problem solving at various cognitive levels, it is better suited for concept exploration and collaborative lab learning environments as opposed to the traditional lab works with a “cookbook” approach that tend to lead students to follow certain procedures for expected solutions with the absence of problem exploration stage. In addition to the open-ended lab modules, course instructors formed online lab groups through which students shared the entire problem-solving process from ideas formation to solutions through trial and error.
To investigate the effectiveness of the open-ended online lab learning experiences, students in all courses were randomly divided into experimental and control groups. Students in the control group learned in labs through learning materials that are aligned with core concepts by following a completed given procedures students in the experimental group learned through inquiry-based labs learning materials that required them to work in teams by integrating core concepts together to find solutions with multiple approaches. To maximize the online lab learning effect and to replicate the way industry, commerce and research practice, instructor structured cooperative learning strategies were applied along with pre-lab simulations and videos.
The research results showed that generally students in the experimental group outperformed their counterparts in labs especially with more advanced concept understanding and applications, but showed mixed results for the overall class performance based on their course learning outcomes such as quizzes, lab reports, and tests. Further, survey results showed that 72% of students reported open-ended lab learning helped them learn better. According to interviews, the initial stage of working with team members was somewhat challenging from difficulties in finding time to work together for discussion and problem solving. Yet, through many communication tools, such as course LMS and mobile apps they were able to collaborate in lab problems, which also led them to build learning communities that went beyond the courses.
more »
« less
- Award ID(s):
- 2048328
- NSF-PAR ID:
- 10524154
- Publisher / Repository:
- ASEE Conferences
- Date Published:
- Format(s):
- Medium: X
- Location:
- Baltimore , Maryland
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Engineering undergraduates’ academic writing experiences prior to entry-level engineering lab courses can be classified into three different groups: a group with both rhetorically-focused writing (e.g., first-year-composition) and technical writing courses; a group with only rhetorically-focused writing courses; and a group with no rhetorically-focused writing or technical writing courses. Using a lens of transfer theories that explain how much knowledge from one context is used or adapted in new contexts, these three groups can be called concurrent, vertical, and absent transfer groups respectively. This study, which is part of a larger project developing and implementing writing-focused modules in engineering labs, aims to investigate undergraduates’ perspectives on readiness, writing transfer, and effectiveness of writing instructions in engineering lab report writing through a student survey. End-of-term online surveys (n = 40) of undergraduates in entry-level engineering lab courses were collected from three distinctive universities: an urban, commuter, public research university; an urban, private, teaching-focused university; and a rural, public, teaching-focused university. The survey questions have three parts: 1) student perspectives in writing in engineering disciplines; 2) how students use prior writing knowledge when writing lab reports in engineering lab courses; and 3) how engineering lab course writing instructions impact students’ engineering lab report writing. Findings suggest that the three transfer groups present statistical distinctions on the readiness of writing engineering lab reports (concurrent group as the highest and absent group as the lowest). The three groups also show different perspectives on how their freshmen writing courses contributed their engineering lab report writing. The concurrent transfer group believed freshmen writing instruction regarding “focus on purpose” contributed most when they write lab reports, while the greatest number of vertical transfer group students mentioned “knowledge about format and structure” was most helpful. Many absent transfer students valued “identifying problems or questions” instructed from their freshmen writing-intensive philosophy course as the content they used most when writing lab reports. Ultimately, the analysis of the data suggested that despite their perceived preparedness for writing lab reports, most of the students felt their skills improved as a result of engaging in lab report writing activities.more » « less
-
Engineering undergraduates’ academic writing experiences prior to entry-level engineering lab courses can be classified into three different groups: a group with both rhetorically-focused writing (e.g., first-year-composition) and technical writing courses; a group with only rhetorically-focused writing courses; and a group with no rhetorically-focused writing or technical writing courses. Using a lens of transfer theories that explain how much knowledge from one context is used or adapted in new contexts, these three groups can be called concurrent, vertical, and absent transfer groups respectively. This study, which is part of a larger project developing and implementing writing-focused modules in engineering labs, aims to investigate undergraduates’ perspectives on readiness, writing transfer, and effectiveness of writing instructions in engineering lab report writing through a student survey. End-of-term online surveys (n = 40) of undergraduates in entry-level engineering lab courses were collected from three distinctive universities: an urban, commuter, public research university; an urban, private, teaching-focused university; and a rural, public, teaching-focused university. The survey questions have three parts: 1) student perspectives in writing in engineering disciplines; 2) how students use prior writing knowledge when writing lab reports in engineering lab courses; and 3) how engineering lab course writing instructions impact students’ engineering lab report writing. Findings suggest that the three transfer groups present statistical distinctions on the readiness of writing engineering lab reports (concurrent group as the highest and absent group as the lowest). The three groups also show different perspectives on how their freshmen writing courses contributed their engineering lab report writing. The concurrent transfer group believed freshmen writing instruction regarding “focus on purpose” contributed most when they write lab reports, while the greatest number of vertical transfer group students mentioned “knowledge about format and structure” was most helpful. Many absent transfer students valued “identifying problems or questions” instructed from their freshmen writing-intensive philosophy course as the content they used most when writing lab reports. Ultimately, the analysis of the data suggested that despite their perceived preparedness for writing lab reports, most of the students felt their skills improved as a result of engaging in lab report writing activities.more » « less
-
Engineering undergraduates’ academic writing experiences prior to entry-level engineering lab courses can be classified into three different groups: a group with both rhetorically-focused writing (e.g., first-year-composition) and technical writing courses; a group with only rhetorically-focused writing courses; and a group with no rhetorically-focused writing or technical writing courses. Using a lens of transfer theories that explain how much knowledge from one context is used or adapted in new contexts, these three groups can be called concurrent, vertical, and absent transfer groups respectively. This study, which is part of a larger project developing and implementing writing-focused modules in engineering labs, aims to investigate undergraduates’ perspectives on readiness, writing transfer, and effectiveness of writing instructions in engineering lab report writing through a student survey. End-of-term online surveys (n = 40) of undergraduates in entry-level engineering lab courses were collected from three distinctive universities: an urban, commuter, public research university; an urban, private, teaching-focused university; and a rural, public, teaching-focused university. The survey questions have three parts: 1) student perspectives in writing in engineering disciplines; 2) how students use prior writing knowledge when writing lab reports in engineering lab courses; and 3) how engineering lab course writing instructions impact students’ engineering lab report writing. Findings suggest that the three transfer groups present statistical distinctions on the readiness of writing engineering lab reports (concurrent group as the highest and absent group as the lowest). The three groups also show different perspectives on how their freshmen writing courses contributed their engineering lab report writing. The concurrent transfer group believed freshmen writing instruction regarding “focus on purpose” contributed most when they write lab reports, while the greatest number of vertical transfer group students mentioned “knowledge about format and structure” was most helpful. Many absent transfer students valued “identifying problems or questions” instructed from their freshmen writing-intensive philosophy course as the content they used most when writing lab reports. Ultimately, the analysis of the data suggested that despite their perceived preparedness for writing lab reports, most of the students felt their skills improved as a result of engaging in lab report writing activities.more » « less
-
ABSTRACT A virtual X-Ray Laboratory for Materials Science and Engineering has been developed and used as a flexible and powerful tool to help undergraduate and graduate students become familiar with the design and operation of the X-ray equipment in visual and interactive ways in order to learn fundamental principles underlying X-ray analytical methods. The virtual equipment and lab assignments have been used for: (i) authentic online experimentation, (ii) homework and control assignments with traditional and blended courses, (iii) preparing students for hands-on work in physical X-ray labs, (iv) lecture demonstrations, and (v) performance-based assessment of students’ ability to apply gained theoretical knowledge for operating actual equipment and solving practical problems. Students have also used the virtual diffractometer linked and synchronized with an actual powder diffractometer for blended experimentation. Using the associated learning and content management system (LCMS) and authoring tools, instructors kept track of students’ performance and designed new virtual experiments and more personalized learning assignments for students. The lab has also been integrated with the MITx course available on the massive open online course edX platform for Massachusetts Institute of Technology for undergraduate students.more » « less