skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robert Noyce Teacher Scholarship Program
National Science Foundation Robert Noyce Teacher Scholarship Program seeks to encourage talented science, technology, engineering, and mathematics (STEM) majors and professionals to become K-12 mathematics and science (including engineering and computer science) teachers. The program invites creative and innovative proposals that address the critical need for recruiting and preparing highly effective elementary and secondary science and mathematics teachers in high need local educational agencies.  more » « less
Award ID(s):
1758371
PAR ID:
10100821
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
New Mexico Public Education Fall Summit
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Four Corners Noyce Program seeks to encourage talented science, technology, engineering, and mathematics (STEM) majors and professionals to become high school mathematics and science (including engineering and computer science) teachers in the Four Corners area. The geographic area includes both tribal and public K-12 school districts. The program seeks to serve high schools in these districts. 
    more » « less
  2. Abstract More research related to effective ways to support and retain teachers in the teaching profession is necessary as the need for science and mathematics teachers continues to grow. Understanding how teachers perceive challenges and experience support early in their career can contribute to building environments which foster teacher retention. This mixed‐method study explored the influences on the self‐efficacy and career satisfaction of a group of 21 early‐career (2–6 years of classroom experience) secondary science and mathematics teachers who participated in a traditional university preparation program and scholarship program to prepare them for teaching in high‐need school districts. Using data from an efficacy survey and semistructured interviews, this study measured changes in teacher efficacy and described teacher leadership experiences, perceived teaching challenges, and valued supports. Results found no change in teachers' self‐efficacy scores although mean outcome expectancy scores decreased. Teachers' identification as a teacher leader was correlated with science or mathematics teaching self‐efficacy. Qualitative coding of the interviews revealed ways in which assessments, workload, school structures and polices, administration, students, and teacher community either contributed to teachers reported difficulties or supported them as early‐career teachers. The discussion offers suggestions for ways to increase secondary science and mathematics teachers' job satisfaction. 
    more » « less
  3. The integration of engineering content at the pre-college level is gaining global traction as a strategy to improve learning outcomes and to promote inclusion and diversity in STEM (Science, Technology, Engineering, and Mathematics). Preservice teacher programs have become natural insertion points for integration efforts by providing future K-12 teachers with the resources and preparation to teach engineering as part of their academic preparation. There is a need to understand the socio-cognitive mechanisms by which teacher preparation programs can help teachers to integrate engineering in their future classrooms. This work examines how an innovative cross disciplinary program impacted important social-cognitive drivers of engineering integration. We used mediation analysis to understand a successful pathway to engineering integration as a result of exposure to a cross-disciplinary collaboration with engineering students. This study revealed how participation in the program as part of their academic preparation increased PTSs’ confidence to teach engineering and their beliefs about the importance of engineering content, which in turn, increased their intention to integrate engineering in the classroom. 
    more » « less
  4. null (Ed.)
    This study investigates how teachers verbally support students to engage in integrated engineering, science, and computer science activities across the implementation of an engineering project. This is important as recent research has focused on understanding how precollege students’ engagement in engineering practices is supported by teachers (Watkins et al., 2018) and the benefits of integrating engineering in precollege classes, including improved achievement in science, ability to engage in science and engineering practices inherent to engineering (i.e., engineering design), and increased awareness of engineering (National Academy of Engineering and the National Research Council; Katehi et al., 2009). Further, there is a national emphasis on integrating engineering, science, and computer science practices and concepts in science classrooms (NGSS Lead States, 2013). Yet little research has considered how teachers implement these disciplines together within one classroom, particularly elementary teachers who often have little prior experience in teaching engineering and may need support to integrate engineering design into elementary science classroom settings. In particular, this study explores how elementary teachers verbally support science and computer science concepts and practices to be implicitly and explicitly integrated into an engineering project by implementing support intended by curricular materials and/or adding their own verbal support. Implicit use of integration included students engaging in integrated practices without support to know that they were doing so; explicit use of integration included teachers providing support for students to know how and why they were integrating disciplines. Our research questions include: (1) To what extent did teachers provide implicit and explicit verbal support of integration in implementation versus how it was intended in curricular materials? (2) Does this look different between two differently-tracked class sections? Participants include two fifth-grade teachers who co-led two fifth-grade classes through a four-week engineering project. The project focused on redesigning school surfaces to mitigate water runoff. Teachers integrated disciplines by supporting students to create computational models of underlying scientific concepts to develop engineering solutions. One class had a larger proportion of students who were tracked into accelerated mathematics; the other class had a larger proportion of students with individualized educational plans (IEPs). Transcripts of whole class discussion were analyzed for instances that addressed the integration of disciplines or supported students to engage in integrated activities. Results show that all instances of integration were implicit for the class with students in advanced mathematics while most were explicit for the class with students with IEPs. Additionally, support was mainly added by the teachers rather than suggested by curricular materials. Most commonly, teachers added integration between computer science and engineering. Implications of this study are an important consideration for the support that teachers need to engage in the important, but challenging, work of integrating science and computer science practices through engineering lessons within elementary science classrooms. Particularly, we consider how to assist teachers with their verbal supports of integrated curricula through engineering lessons in elementary classrooms. This study then has the potential to significantly impact the state of knowledge in interdisciplinary learning through engineering for elementary students. 
    more » « less
  5. The Next Generation Science Standards [1] recognized evidence-based argumentation as one of the essential skills for students to develop throughout their science and engineering education. Argumentation focuses students on the need for quality evidence, which helps to develop their deep understanding of content [2]. Argumentation has been studied extensively, both in mathematics and science education but also to some extent in engineering education (see for example [3], [4], [5], [6]). After a thorough search of the literature, we found few studies that have considered how teachers support collective argumentation during engineering learning activities. The purpose of this program of research was to support teachers in viewing argumentation as an important way to promote critical thinking and to provide teachers with tools to implement argumentation in their lessons integrating coding into science, technology, engineering, and mathematics (which we refer to as integrative STEM). We applied a framework developed for secondary mathematics [7] to understand how teachers support collective argumentation in integrative STEM lessons. This framework used Toulmin’s [8] conceptualization of argumentation, which includes three core components of arguments: a claim (or hypothesis) that is based on data (or evidence) accompanied by a warrant (or reasoning) that relates the data to the claim [9], [8]. To adapt the framework, video data were coded using previously established methods for analyzing argumentation [7]. In this paper, we consider how the framework can be applied to an elementary school teacher’s classroom interactions and present examples of how the teacher implements various questioning strategies to facilitate more productive argumentation and deeper student engagement. We aim to understand the nature of the teacher’s support for argumentation—contributions and actions from the teacher that prompt or respond to parts of arguments. In particular, we look at examples of how the teacher supports students to move beyond unstructured tinkering (e.g., trial-and-error) to think logically about coding and develop reasoning for the choices that they make in programming. We also look at the components of arguments that students provide, with and without teacher support. Through the use of the framework, we are able to articulate important aspects of collective argumentation that would otherwise be in the background. The framework gives both eyes to see and language to describe how teachers support collective argumentation in integrative STEM classrooms. 
    more » « less