skip to main content


Title: Broadening the Participation of Rural Students in Engineering: Preliminary Findings on the Perspectives of Key Community Members
While post-secondary enrollment rates have increased for all groups over the last 40 years, higher education enrollment, and specifically enrollment in engineering programs, continues to vary based on demographic characteristics. As a result, efforts to spark interest in engineering among PreK-12 underrepresented students have increased substantially in recent years. However, as past work has demonstrated, interest is not always sufficient to help students pursue engineering majors, particularly for rural students. In many rural communities, strong family networks, community values, and local economic drivers often play a significant role in shaping students’ career choices. To account for these contextual factors, this project shifts the focus from individual students to the communities themselves to understand how key stakeholders and organizations support engineering as a major choice. Our research aims to gain a holistic understanding of the rural communities by employing three phases: 1. Focus groups and interviews with undergraduate engineering students from selected rural high schools that are known for producing high numbers of engineering majors. 2. Interviews with key individuals (e.g. teachers, guidance counselors, community leaders) and observations of activities that emerged as salient in Phase 1. 3. Participatory design workshops to share findings from the first two phases and foster creative dialogue among the rural schools and communities. The focus groups and individual interviews conducted in Phase 1 provided a rich understanding of how and why undergraduate students from rural high schools selected engineering as a college major. They also laid the foundation for the second phase of this project, which includes interviews with key members of the students' home communities and observations of programs and/or events that emerged as salient. Data collection for Phase 2 will continue through the Spring 2019 semester and our poster will present high-level insights from the interviews and observations.The findings from this phase will allow us to triangulate students’ perceptions with the perceptions and practices of others and will provide a rich understanding of the goals, attitudes, and experiences of community members who often play a key role in students’ decisions.  more » « less
Award ID(s):
1734834
NSF-PAR ID:
10100848
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ASEE annual conference & exposition
ISSN:
2153-5965
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Broadening participation in engineering is critical given the gap between the nation’s need for engineering graduates and its production of them. Efforts to spark interest in engineering among PreK-12 students have increased substantially in recent years as a result. However, past research has demonstrated that interest is not always sufficient to help students pursue engineering majors, particularly for rural students. In many rural communities, influential adults (family, friends, teachers) are often the primary influence on career choice, while factors such as community values, lack of social and cultural capital, limited course availability, and inadequate financial resources act as potential barriers. To account for these contextual factors, this project shifts the focus from individual students to the communities to understand how key stakeholders and organizations support engineering as a major choice and addresses the following questions: RQ1. What do current undergraduate engineering students who graduated from rural high schools describe as influences on their choice to attend college and pursue engineering as a post-secondary major? RQ2. How does the college choice process differ for rural students who enrolled in a 4-year university immediately after graduating from high school and those who transferred from a 2-year institution? RQ3. How do community members describe the resources that serve as key supports as well as the barriers that hinder support in their community? RQ4. What strategies do community members perceive their community should implement to enhance their ability to support engineering as a potential career choice? RQ5. How are these supports transferable or adaptable by other schools? What community-level factors support or inhibit transfer and adaptation? To answer the research questions, we employed a three-phase qualitative study. Phase 1 focused on understanding the experiences and perceptions of current [University Name] students from higher-producing rural schools. Analysis of focus group and interview data with 52 students highlighted the importance of interest and support from influential adults in students’ decision to major in engineering. One key finding from this phase was the importance of community college for many of our participants. Transfer students who attended community college before enrolling at [University Name] discussed the financial influences on their decision and the benefits of higher education much more frequently than their peers. In Phase 2, we used the findings from Phase 1 to conduct interviews within the participants’ home communities. This phase helped triangulate students’ perceptions with the perceptions and practices of others, and, equally importantly, allowed us to understand the goals, attitudes, and experiences of school personnel and local community members as they work with students. Participants from the students’ home communities indicated that there were few opportunities for students to learn more about engineering careers and provided suggestions for how colleges and universities could be more involved with students from their community. Phase 3, scheduled for Spring 2020, will bring the findings from Phases 1 and 2 back to rural communities via two participatory design workshops. These workshops, designed to share our findings and foster collaborative dialogue among the participants, will enable us to explore factors that support or hinder transfer of findings and to identify policies and strategies that would enhance each community’s ability to support engineering as a potential career choice. 
    more » « less
  2. Interest in increasing both the number and diversity of students enrolling in engineering has resulted in significant research on students’ career choice decisions. Notably, however, while general trends have emerged, many of the models that have been developed focus on majority students. But an increasing body of work on students from a variety of specific demographic groups highlight unique socio-cultural experiences that influence individuals’ career choice decisions. Most relevant to this study, literature on rural students suggests that the lack of high-level STEM courses in rural schools and a desire to stay close to home played key roles in limiting students’ consideration of engineering as a potential career. However, little work has explored how rural communities support and promote engineering as a career choice for their students. Therefore, this study explored the ways in which rural communities provide support to help students make fully informed decisions about engineering as a college major. The findings presented here come from Phase 2 of a three-phase study exploring engineering career choice among rural students. Using interview and focus group data collected from current engineering students in Phase 1, Phase 2 turned to community members, including high school personnel, local industry leaders, members of local governments, and members of key community organizations (e.g., 4-H). Using interviews with 16 participants across 3 communities, we address the following question: What beliefs, experiences, and practices characterize community members or organizations who support or encourage rural students to choose engineering? The interviews explored the participants’ perceptions of their community overall, resources that helped students explore postsecondary options, barriers students faced to enrolling in postsecondary education/engineering, understanding of engineering as a field both generally and for students from that community, and ways Virginia Tech can be a better community partner and fulfill its mission as a public institution. This project aims to broaden participation in engineering by gaining a holistic understanding of the communities that effectively support engineering major choice for rural students and provide contextual methods of increasing support for students from these rural areas. 
    more » « less
  3. his project is supported by an NSF BPE grant. Career choices, such as engineering, are influenced by a number of factors including personal interest, ability, competence beliefs, prior work-related experience, and financial and social supports. However, financial and social support, a particularly significant factor for rural students’ career decisions, is often overlooked in the literature exploring career choice. Moreover, little work has explored how communities serve as key influencers for supporting or promoting engineering as a career choice. Therefore, the goal of this study is to explore the ways in which communities provide support to students deciding to pursue engineering as a college major. To better understand how students from selected rural area high schools choose engineering as a major, we conducted focus group discussions consisting of 4-6 students each from selected schools to talk collectively about their high school experiences and their choice to major in engineering. Choosing focus group participants from different schools enabled us to elicit tacit perceptions and beliefs that may not be evident when students from the same community talk with one another. That is, as students share their experiences across schools, they may recognize differences in their experiences that, though otherwise unconscious or unacknowledged, proved significant in their choice of college and major. We expect that certain community programs and the individuals involved will have some influence on students’ decisions to study engineering at [University Name]. We anticipate that the results will yield two key outcomes: 1. A holistic understanding of the communities that effectively support and encourage engineering major choice for rural students. 2. Locally driven, contextually relevant recommendations for policies and programs that would better enable economically disadvantaged, rural schools in southwestern Virginia to support engineering as a career choice for high school students. By understanding the ways some economically-disadvantaged rural communities support engineering as a career choice and linking a broad spectrum of rural communities together around this issue, this project will broaden participation in engineering by increasing support for students from these areas. By shifting our focus from students to communities, this research broadens our understanding of career choice by capturing the perspectives of community members (including not only school personnel, but also community leaders, students’ families, business owners and others) who often play a key role in students’ decisions, particularly in rural communities. Our research will bring these voices into the conversation to help scholars learn from and respond to these essential community perspectives. In doing so, we will provide a more nuanced model of engineering career choice that can then be explored in other rural contexts. This work thus contributes to the research on career choice, rural education, and engineering education. © 2018 American Society for Engineering Education 
    more » « less
  4. null (Ed.)
    As our nation’s need for engineering professionals grows, a sharp rise in P-12 engineering education programs and related research has taken place (Brophy, Klein, Portsmore, & Rogers, 2008; Purzer, Strobel, & Cardella, 2014). The associated research has focused primarily on students’ perceptions and motivations, teachers’ beliefs and knowledge, and curricula and program success. The existing research has expanded our understanding of new K-12 engineering curriculum development and teacher professional development efforts, but empirical data remain scarce on how racial and ethnic diversity of student population influences teaching methods, course content, and overall teachers’ experiences. In particular, Hynes et al. (2017) note in their systematic review of P-12 research that little attention has been paid to teachers’ experiences with respect to racially and ethnically diverse engineering classrooms. The growing attention and resources being committed to diversity and inclusion issues (Lichtenstein, Chen, Smith, & Maldonado, 2014; McKenna, Dalal, Anderson, & Ta, 2018; NRC, 2009) underscore the importance of understanding teachers’ experiences with complementary research-based recommendations for how to implement engineering curricula in racially diverse schools to engage all students. Our work examines the experiences of three high school teachers as they teach an introductory engineering course in geographically and distinctly different racially diverse schools across the nation. The study is situated in the context of a new high school level engineering education initiative called Engineering for Us All (E4USA). The National Science Foundation (NSF) funded initiative was launched in 2018 as a partnership among five universities across the nation to ‘demystify’ engineering for high school students and teachers. The program aims to create an all-inclusive high school level engineering course(s), a professional development platform, and a learning community to support student pathways to higher education institutions. An introductory engineering course was developed and professional development was provided to nine high school teachers to instruct and assess engineering learning during the first year of the project. This study investigates participating teachers’ implementation of the course in high schools across the nation to understand the extent to which their experiences vary as a function of student demographic (race, ethnicity, socioeconomic status) and resource level of the school itself. Analysis of these experiences was undertaken using a collective case-study approach (Creswell, 2013) involving in-depth analysis of a limited number of cases “to focus on fewer "subjects," but more "variables" within each subject” (Campbell & Ahrens, 1998, p. 541). This study will document distinct experiences of high school teachers as they teach the E4USA curriculum. Participants were purposively sampled for the cases in order to gather an information-rich data set (Creswell, 2013). The study focuses on three of the nine teachers participating in the first cohort to implement the E4USA curriculum. Teachers were purposefully selected because of the demographic makeup of their students. The participating teachers teach in Arizona, Maryland and Tennessee with predominantly Hispanic, African-American, and Caucasian student bodies, respectively. To better understand similarities and differences among teaching experiences of these teachers, a rich data set is collected consisting of: 1) semi-structured interviews with teachers at multiple stages during the academic year, 2) reflective journal entries shared by the teachers, and 3) multiple observations of classrooms. The interview data will be analyzed with an inductive approach outlined by Miles, Huberman, and Saldaña (2014). All teachers’ interview transcripts will be coded together to identify common themes across participants. Participants’ reflections will be analyzed similarly, seeking to characterize their experiences. Observation notes will be used to triangulate the findings. Descriptions for each case will be written emphasizing the aspects that relate to the identified themes. Finally, we will look for commonalities and differences across cases. The results section will describe the cases at the individual participant level followed by a cross-case analysis. This study takes into consideration how high school teachers’ experiences could be an important tool to gain insight into engineering education problems at the P-12 level. Each case will provide insights into how student body diversity impacts teachers’ pedagogy and experiences. The cases illustrate “multiple truths” (Arghode, 2012) with regard to high school level engineering teaching and embody diversity from the perspective of high school teachers. We will highlight themes across cases in the context of frameworks that represent teacher experience conceptualizing race, ethnicity, and diversity of students. We will also present salient features from each case that connect to potential recommendations for advancing P-12 engineering education efforts. These findings will impact how diversity support is practiced at the high school level and will demonstrate specific novel curricular and pedagogical approaches in engineering education to advance P-12 mentoring efforts. 
    more » « less
  5. https://peer.asee.org/27950 This paper presents results of work completed on our project, Intersectionality of Non-normative Identities in the Cultures of Engineering (InIce). The overarching focus of this project is on how students who hold non-normative identities position themselves, grow through their education, and navigate the cultures of engineering they experience in college. Our goal is to investigate ways to engage students who hold non-normative identities to become more active and lifelong participants in engineering disciplines. Our work is proceeding in three phases: 1) Identify, through a quantitative instrument, the attitudinal profiles of normative and non-normative students in engineering; 2) Characterize students’ normative and non-normative identities through in-depth interviews and analysis of differences between students with normative and non-normative identities in engineering; and 3) Drawing from our findings, develop a workshop and set of courses to incorporate diversity topics into engineering programs to enhance the culture of engineering to be more responsive towards, and inclusive of, a diverse range of student identities. We have completed the first phase of the project in which we quantitatively measured and characterized student groups with normative and non-normative identities in engineering. Our definitions of normative and non-normative for this project are developed through Topological Data Analysis (TDA) of a set of multi-institution survey data (n = 2916). TDA allows identification of groups without imposing a priori hypotheses on how the attitudes of students may group together (nor how they may distinguish between demographic groups). This approach allows the underlying structure of the data to emerge rather than imposing pre-defined definitions of normative attitudes or identities. Our TDA results revealed one group that contains a relatively large number of students (the “normative” group) and a total of seven other distinct, but relatively populated, groups (the “non-normative” groups). We have compiled a summary of the most salient attitudinal constructs in terms of characterizing and distinguishing between all these groups including: motivation (value, goal orientation, future time perspective), engineering and physics identities (performance/competence and recognition beliefs for each), personality traits (neuroticism, extraversion, belongingness) and grit (consistency of interest). We are currently in Phase 2 of our study in which we are conducting a series of qualitative, longitudinal interviews with students selected from normative and non-normative groups to understand how they navigate their engineering experiences and define their educational trajectories over the first two years of college. This data will be deductively analyzed based on our existing attitudinal frameworks as well as inductively coded for emerging themes on how students feel belongingness within engineering culture. This project promises to move traditional measures of demographic data beyond socially constructed perceptions of others and allows for the representation of student diversity from the perspective of each participant. This more accurate reflection of diversity provides novel insight into the experiences of students who might otherwise be ignored or unjustifiably lumped in with other students with whom they share some demographic indicator and how residing at the intersection of multiple measures of diversity can influence students’ experiences in engineering culture. 
    more » « less