Students are taking increasingly complex pathways through higher education, yet mobility patterns other than one-to-one vertical transfer have been largely neglected in the research literature (Taylor & Jain, 2017). This paper draws on semi-structured interviews with 27 students majoring in STEM fields from three universities to explore why they undertake non-traditional transfer patterns during their undergraduate studies. Students exhibited various dynamic transfer patterns such as summer swirling at community colleges, co-enrollment at multiple institutions, or lateral transfer between two-year or four-year institutions. Rationales for dynamic transfer varied by type of enrollment pattern.. Students often received benefits from their enrollment mobility (e.g., stay on track toward degree, maximize chances for success, affordability, etc.) but dynamic transfer was also prompted by unmet needs at their home institution. Students who attended more than two institutions or who exhibited discontinuous enrollment patterns experienced the most academic, personal, and financial duress. Students’ creative and dynamic transfer patterns in their higher education studies highlight the pivotal role that community colleges play in the degree persistence of university STEM majors. Additionally, students’ dynamic transfer patterns illustrate the resourceful ways that they navigate higher education and suggests the need for institutions to reexamine how they support students. 
                        more » 
                        « less   
                    
                            
                            On Transfer Student Success: Exploring the Academic Trajectories of Black Transfer Engineering Students from Community Colleges
                        
                    
    
            According to the National Science Foundation, 50% of Black engineering students who have received a bachelor’s and master’s degree attended a community college at some point during their academic career. However, while research highlights the importance of supporting underrepresented racial and ethnic minorities (URMs) in STEM disciplines, there is a dearth of literature focusing on URMs in community colleges who pursue engineering and other science/math-based majors. Further, Black undergraduates in community colleges are often homogenized by area of study, with little regard for their specific major/discipline. Similarly, while engineering education research has begun to focus on the population of community college students, less attention has been paid to unpacking the experiences of racial subgroups of community college attendees. The engineering student transfer process has specific aspects related to it being a selective and challenging discipline (e.g., limited enrollment policies, engineering culture shock) that warrants a closer investigation. The purpose of this paper is to examine the experiences of a small population of students who have recently transferred from several community colleges to one four-year engineering school. Specifically, we will present preliminary findings derived from interviews with three Black students who started their academic careers at several community colleges in a Mid-Atlantic state, before transferring to the flagship institution of that same state. Interview transcripts will undergo a thorough analysis and will be coded to document rich themes. Multiple analyses of coded interview data will be performed by several members of the research team, as well as external evaluation members who are leading scholars in STEM and/or transfer education research. This research is part of a larger-scale, three year qualitative study, which will examine the academic trajectories of two distinct groups of Blacks in engineering majors: 1) Blacks born and educated in the United States and 2) Those born and educated in other countries. By looking at these populations distinctly, we will build upon past literature that disaggregates the experiences of Black STEM students who represent multiple identities across the African diaspora. Through this lens, we hope to highlight the impact that cultural background may have on the transfer experience. The theoretical framework guiding this study posits that the persistence of Black transfer students in engineering is a longitudinal process influenced by the intersection of both individual and institutional factors. We draw from the STEM transfer model, noting that the transfer process commences during a student’s community college education and continues through his/her transfer and enrollment in an engineering program at a four-year institution. The following factors contribute to our conceptualization of this process: pre-college background, community college prior to transfer, initial transfer to the four-year university, nearing 4-year degree completion. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1828619
- PAR ID:
- 10109058
- Date Published:
- Journal Name:
- ASEE Annual Conference proceedings
- ISSN:
- 1524-4644
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Vemu, Sheela (Ed.)Community colleges expand access to higher education and play a key role in efforts to increase and diversify the future science, technology, engineering, and mathematics (STEM) workforce. While community colleges increase access to higher education and millions of students attend them for some portion of their education, the experiences of transfer students remain relatively understudied. Transferring during an academic journey can compound the barriers that students already face when pursuing a STEM degree. This study uses Schlossberg’s model for analyzing human adaptation to transition to understand how STEM community college transfer students navigate and adapt to the 4-year university. Five semistructured focus groups were conducted with STEM community college transfer students attending an urban university. Analysis of the focus groups resulted in a new model: the amended model of adaptation to transfer transition, or AMATT, which illustrates various factors that played a role in STEM community college transfer students’ adaptation a university. Analyses illumined two broad pathways that students tend to diverge into during their transitions—thriving or simply surviving. This work provides a framework for understanding factors influencing the transfer process and ideally will inform institutions and students as they consider maximal transfer student success.more » « less
- 
            Objective/Research Question: This research explores how community college students, who are underrepresented in science, technology, engineering, and mathematics (STEM) fields and aspire to vertical transfer in STEM make choices about majors and transfer destinations. The question is important to advancing equity in STEM, which continues to perpetuate disparities in attainment for minoritized, first-generation, and financially disadvantaged students, who disproportionately enter higher education in community colleges. Methods: Using a longitudinal, qualitative research design, the study relied on semi-structured interviewing to generate in-depth evidence about student experiences. Results: Findings showed that career goals were uniformly influential to students, yet career information was unevenly available or comprehensible during community college. Students’ choices about what to major in and where to transfer were iterative and intertwined, with these choices deeply connected to students’ families and lifetime priorities. Delays in student decision-making tended to have less to do with uncertain individual preferences than to lack of information about a specific STEM major and its alignment with possible future degrees, transfer destinations, and career pathways, as well as contingencies associated with the transfer admission process. Conclusions/Contributions: This research demonstrated STEM-specific nuance in how underrepresented community college students navigate major, career, and transfer destination decision-making as well as the influence of family and location-based priorities in student choices. Future research should investigate how to best provide directional support for students’ major and transfer destination decisions, including major-to-career awareness and the academic and personal dimensions of transfer.more » « less
- 
            This project will contribute to the national need for well-educated scientists, mathematicians, engineers, and technicians by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students who are pursuing Bachelor of Science degrees in engineering. First semester junior, primarily transfer, students at Iron Range Engineering will receive scholarships for one semester. The Iron Range Engineering (IRE) STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with an engineering degree and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce. During the last two years of their education, IRE students work in industry, earning an engineering intern salary, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project will provide access to a financially responsible engineering degree for low-income students by financially supporting them during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project will provide personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. By providing these supports, the IRE STEM Scholars project aims to prepare students to be competitive applicants for the engineering workforce with career development and engineering co-op experience. Because community colleges draw relatively representative proportions of students from a variety of backgrounds, this project has the potential to learn how transfer pathways and co-op education can support financially sustainable pathways to engineering degrees for a more diverse group of students and contribute to the development of a diverse, competitive engineering workforce. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates with demonstrated financial need. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and overall wellbeing (or mental and physical health). Student outcomes have previously been measured primarily through academic markers such as graduation rates and GPA. In addition to these outcomes, this project explores ways to better support overall student thriving. This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? In the first year of the IRE STEM Scholars Project, initial interview data describe scholars’ sense of belonging in engineering, prior to their first co-op experiences and survey data describe IRE students’ experiences in co-op and overall sense of belonging. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students.more » « less
- 
            Currently, science, technology, engineering, and mathematics (STEM) programs in community colleges and 4-year institutions are predominantly white spaces that can marginalize underrepresented, racial/ethnic minority students (Kanno & Cromley, 2015; Martin, et al., 2018; Samuelson & Litzler, 2016; Valadez, 2008; Wang, Lee, & Prevost, 2017). Latinx students make up the largest racial/ethnic minority group of college students (Martinez & Deil-Amen, 2015), and they are more likely to begin their postsecondary education paths in community colleges (Arbona & Nora, 2007; Starobin & Bivens, 2014). Many will start at community college in programs that lead to vertical transfer (Martin, et al., 2018). Transferring from a community college to a four-year institution is a difficult process to navigate, especially for racial/ethnic minority students who are likely to have experienced inequitable educational experiences. Institutions seeking to assist them in obtaining baccalaureate degrees must increase these students’ Transfer Student Capital (TSC) (Laanan, Starobin, & Eggleston, 2010). The purpose of this presentation is to show how high schools, community colleges, and four-year institutions can partner together to assist Latinx students in acquiring baccalaureate degrees in STEM fields by increasing their TSC.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    