skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Study of Agave Fiber-Reinforced Biocomposite Films
Thermoplastic resins (linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), and polypropylene (PP)) reinforced by different content ratios of raw agave fibers were prepared and characterized in terms of their mechanical, thermal, and chemical properties as well as their morphology. The morphological properties of agave fibers and films were characterized by scanning electron microscopy and the variations in chemical interactions between the filler and matrix materials were studied using Fourier-transform infrared spectroscopy. No significant chemical interaction between the filler and matrix was observed. Melting point and crystallinity of the composites were evaluated for the effect of agave fiber on thermal properties of the composites, and modulus and yield strength parameters were inspected for mechanical analysis. While addition of natural fillers did not affect the overall thermal properties of the composite materials, elastic modulus and yielding stress exhibited direct correlation to the filler content and increased as the fiber content was increased. The highest elastic moduli were achieved with 20 wt % agave fiber for all the three composites. The values were increased by 319.3%, 69.2%, and 57.2%, for LLDPE, HDPE, and PP, respectively. The optimum yield stresses were achieved with 20 wt % fiber for LLDPE increasing by 84.2% and with 30 wt % for both HDPE and PP, increasing by 52% and 12.3% respectively.  more » « less
Award ID(s):
1738417 1916564
PAR ID:
10100885
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Materials
Volume:
12
Issue:
1
ISSN:
1996-1944
Page Range / eLocation ID:
99
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Matthew, A; Radhika, P; Vijaya, R (Ed.)
    Abstract In the present work, we report the effect of low‐temperature plasma treatment on thermal, mechanical, and biodegradable properties of polymer composite blown films prepared from carp fish scale powder (CFSP) and linear low‐density polyethylene (LLDPE). The CFSP was melt compounded with LLDPE using a filament extruder to prepare 1, 2, and 3 wt.% of CFSP in LLDPE polymer composite filaments. These filaments were further pelletized and extruded into blown films. The blown films extruded with 1, 2, and 3 wt.% of CFSP in LLDPE were tested for thermal and mechanical properties. It was observed that the tensile strength decreased with the increased loading content of CFSP, and 1% CFSP/LLDPE exhibited the highest tensile strength. To study the effect of low‐temperature plasma treatment, 1% CFSP/LLDP polymer composite with high tensile strength was plasma treated with O2and SF6gas before blow film extrusion. The 1% CFSP/LLDPE/SF6‐extruded blown films showed increased thermal decomposition, crystallinity, tensile strength, and modulus. This may be due to the effect of crosslinking by the plasma treatment. The maximum thermal decomposition rate, crystallinity %, tensile strength, and modulus obtained for 1% CFSP/LLDPE/SF6film were 500.02°C, 35.79, 6.32 MPa, and 0.023 GPa, respectively. Furthermore, the biodegradability study on CFSP/LLDPE films buried in natural soil for 90 days was analyzed using x‐ray fluorescence. The study showed an increase in phosphorus and calcium mass percent in the soil. This is due to the decomposition of the hydroxyapatite present in the CFSP/LLDPE biocomposite. 
    more » « less
  2. ABSTRACT This study explores how a sieving step of waste cellulosic fiber and fine (WCFF) mixture affects the performance of WCFF‐loaded polypropylene (PP) composites and whether the separation of fines from fibers offers an added benefit. The WCFF samples were downsized, and four different filler size ranges were sieved using a series of mesh sizes from 4 to 0.85 mm. The WCFF/PP composites were then compounded at 20 wt.% loading of WCFF using a twin‐screw extruder. Incorporating WCFF increased the tensile strength to 41.28 MPa and the modulus to 3207 MPa, accounting for 28% and 38% enhancements, respectively. Interestingly, the greatest improvements were associated with the nonsieved WCFF case, and the sieved WCFF fibers provided only marginal enhancements over virgin PP. The outperformance of nonsieved WCFF was attributed to the synergistic reinforcement of hybrid fibers and fines as well as the maintenance of longer fibers in the system. However, the strain at break and impact strength of PP decreased after introducing WCFF. Moreover, the complex viscosity and storage modulus increased with an increase in the filler size, due to the formation of a more effective percolative network. The PP's crystallinity exhibited a relatively strong dependency on the sieving, where WCFF samples with short‐aspect‐ratio fillers promoted the crystallinity significantly. It was also found that the WCFF degradation onset temperature increased once it was incorporated into PP. This study suggests that waste cellulosic feedstocks can be utilized as a reinforcement without additional sieving to manufacture high‐performance and cost‐effective composites. 
    more » « less
  3. A growing concern of climate change and waste pollution is causing a shift in products towards green materials. The automotive industry is exploring environmentally friendly alternatives to glass fibers (GF). This research focuses on understanding interactions between constituents of biocomposites made up of basalt fiber (BF) and hemp hurd particle fiber (HF) reinforced polypropylene (PP), and statistically comparing the mechanical properties. The addition of a coupling agent has significantly improved the performance and fiber-matrix interactions in the biocomposite blends. The elastic modulus of some BF/HF/PP mixtures were comparable to the GF/PP composite; however, the GF still outperformed in strength. Rotational and capillary rheometer analysis determined the viscosities of all formulations displaying that basalt composites were consistently lower in viscosity than the glass fiber composite, indicating easier processing conditions. 
    more » « less
  4. ACS (Ed.)
    Synthetic fibers such as glass, carbon, etc., are used as reinforcement in polymer composites due to their high strength and modulus. However, synthetic fibers contribute to high costs and have a significant environmental impact. To overcome this challenge, various natural fibers, including banana, kenaf, coir, bamboo, hemp, and sisal fiber, as reinforced in a polymer matrix are investigated for mechanical properties. In this study, biocomposites with natural fibers as reinforced are developed and characterized. Treated and untreated natural fibers such as flax, maple, and pine as reinforced in thermoplastic, in this study, polypropylene (PP), are investigated for the mechanical properties, including tensile, flexural, and impact test. Mechanical test results exhibited that adding the natural fibers enhanced the tensile, flexural, and impact properties. It can be inferred that these biocomposites can be used as potential materials for the automobile industry. 
    more » « less
  5. The research investigates the thermal behavior of mixed systems based on natural and artificial cellulose fibers used as precursors for carbon nonwoven materials. Flax and hemp fibers were employed as natural components; they were first chemically treated to remove impurities and enriched with alpha-cellulose. The structure, chemical composition, and mechanical properties of both natural and viscose fibers were studied. It was shown that fiber properties depend on the fiber production process history; natural fibers are characterized by a high content of impurities and exhibit high strength characteristics, whereas viscose fibers have greater deformation properties. The thermal behavior of blended compositions was investigated using TGA and DSC methods across a wide range of component ratios. Carbon yield values at 1000 °C were found to be lower for blended systems containing 10–40% by weight of bast fibers, with carbon yield increasing as the quantity of natural fibers increased. Thus, the composition of the cellulose composite affects carbon yield and thermal processes in the system. Using the Kissinger method, data were obtained on the value of the activation energy of thermal decomposition for various cellulose and composite systems. It was found that natural fiber systems have three-times higher activation energy than viscose fiber systems, indicating their greater thermal stability. Blends of natural and artificial fibers combine the benefits of both precursors, enabling the deliberate regulation of thermal behavior and carbon material yield. This approach opens up prospects for the creation of functional carbon materials used in various high-tech areas, including thermal insulation. 
    more » « less