skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analyzing the Mechanical Properties of Thermoplastic Reinforced with Natural Fibers
Synthetic fibers such as glass, carbon, etc., are used as reinforcement in polymer composites due to their high strength and modulus. However, synthetic fibers contribute to high costs and have a significant environmental impact. To overcome this challenge, various natural fibers, including banana, kenaf, coir, bamboo, hemp, and sisal fiber, as reinforced in a polymer matrix are investigated for mechanical properties. In this study, biocomposites with natural fibers as reinforced are developed and characterized. Treated and untreated natural fibers such as flax, maple, and pine as reinforced in thermoplastic, in this study, polypropylene (PP), are investigated for the mechanical properties, including tensile, flexural, and impact test. Mechanical test results exhibited that adding the natural fibers enhanced the tensile, flexural, and impact properties. It can be inferred that these biocomposites can be used as potential materials for the automobile industry.  more » « less
Award ID(s):
2113804
PAR ID:
10336317
Author(s) / Creator(s):
Editor(s):
ACS
Date Published:
Journal Name:
ACS
ISSN:
1165-8223
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Beckwith, S.; Flinn, B.; Dustin, J. (Ed.)
    A novel additive manufacturing process utilizing the laminated object manufacturing (LOM) technology with woven natural fiber-reinforced biopolymer is investigated in this paper. Traditional synthetic composite materials are products from nonrenewable crude oil with limited end-of-life options, and therefore not environmentally friendly. The continuous woven natural fiber is used to significantly strengthen the mechanical properties of biocomposites and PLA biopolymer as the matrix made the material completely biodegradable. This is one of the promising replacements for synthetic composites in applications such as automotive panels, constructive materials, and sports and musical instruments. A LOM 3D printer prototype has been designed and built by the team using a laser beam in cutting the woven natural fiber reinforcement and molten PLA powder to bind layers together. Tensile and flexural properties of the LOM 3D printed biocomposites were measured using ASTM test standards and then compared with corresponding values measured from pure PLA specimens 3D printed through FDM. Improved mechanical properties from LOM 3D-printed biocomposites were identified by the team. SEM imaging was performed to identify the polymer infusing and fiber-matrix binding situations. This research took advantage of both the material and process’s benefits and combine them into one sustainable practice. 
    more » « less
  2. The mechanical properties of woven natural fiber reinforced polymers additively manufactured through Laminated Object Manufacturing (LOM) technology are investigated in this paper. The benefits of both the material and manufacturing process were combined into a sustainable practice, as a potential alternative to traditional synthetic composite materials made from nonrenewable crude oil with limited end-of-life alternatives. Woven jute fiber reinforcements are used to strengthen both synthetic and bio- thermoplastic polymers in creating highly biodegradable composite structures. Such materials, as one of the prospective alternatives for synthetic composites, can be used in many engineering fields such as automobile panels, construction materials, and commodity and recreational products including sports and musical instruments. A LOM 3D printer prototype was designed and built by the authors. All woven jute/polymer biocomposite test specimens made using the built prototype in this study had their mechanical (both tensile and flexural) properties assessed using ASTM test standards and then compared to similar values measured from pure polymer specimens. Improved mechanical characteristics were identified and analyzed. Finally, SEM imaging was performed to identify the polymer infusion and fibermatrix bonding conditions. 
    more » « less
  3. Ozden Ochoa (Ed.)
    This paper investigates the mechanical properties of potential sheet stocks of a Laminated Object Manufacturing (LOM) 3D printer made using woven jute fabrics infused with two types of bioresin. The combinations of bioresins and the reinforcements would make green sheet stocks that are expected to be environmentally friendly comparing to traditional synthetic fibers infused with regular resins. Pure resin samples are also involved for comparison purposes. Both tensile and flexural properties are measured following ASTM D638 and D3039 standards (for tensile tests) as well as ASTM D790 and D7264 standards (for flexural tests). Detailed processes of specimen preparation followed by test procedures are introduced. Tensile strengths and moduli as well as flexural strengths and moduli are obtained for comparison. Based on the study of the mechanical properties of both types of pure resin and woven jute fiber-reinforced composites, the research team concluded a few important findings that could be used as guidelines in the sheet stock selection and preparation for the LOM 3D printer that is currently under the building process. 
    more » « less
  4. As a next generation composite material, carbon fiber reinforced polymer (CFRP) has great potential to be widely used in manufacturing industries due to its outstanding mechanical properties. The high strength to weight ratio, and high stiffness inherent to CFRPs make them a desired material in various kinds of applications. CFRPs frequently experience bending loads while in use for such things as aircraft, automobiles, bridges, etc. Anisotropic behavior and limited in through thickness properties are major concerns which affect the performance of CFRPs. Moreover, in the interlaminar region, traditional CFRPs are often vulnerable to matrix sensitive damage such as compressive failure, delamination, and shear failure due to the absence of enough strength in through thickness direction. The tensile and compressive stress generated by the bending loads can weaken the interlaminar shear properties due to the absence of fibers in through thickness and ultimately can lead to catastrophic failure. This study introduces a novel approach with z-threaded CFRP (ZT-CFRP), which incorporates electrically aligned z-threaded carbon nanofibers (CNFs) as reinforcement. Flexural test using 3-point bending was performed on both control CFRP and ZT-CFRP samples reinforced with 1.0 wt.% carbon nanofiber z-threads. The results showed a 15% improvement in the flexural strength and about 36% linear elastic range increase for the ZT-CFRP laminates compared to the unmodified CFRP laminates, and validated the effectiveness of nanofiber Z-threading strategy in strengthening composite materials against flexural loading. 
    more » « less
  5. Natural fiber-reinforced polymers are currently used in a variety of low- to high-performance applications in the automotive, packaging, and construction industries. Previous studies have demonstrated that natural fibers (e.g., flax, hemp) exhibit good tensile mechanical properties and have positive environmental and economic attributes such as low cost, rapid renewability, and worldwide availability. However, natural fibers are inherently susceptible moisture-induced changes in physical and mechanical properties, which can be unfavorable for in-service use. This study illustrates how a micromechanics-based modelling approach can be used to help facilitate durability design and mitigate the deleterious effects of freeze-thaw deterioration in wood-plastic composites (WPCs). The model described in this study predicts the critical fiber volume fraction (V_fcrit) at which damage to the composite will occur under certain environmental conditions for different WPC formulations of hardwood and softwood fiber reinforcement and polymer matrix types. As expected, the results show that V_fcrit increases (a positive result) as anticipated in situ moisture content decreases. In addition, results suggest that fiber packing distribution directly influences V_fcrit and that V_fcrit increases as the mechanical properties of the polymer matrix increase. In sum, the study demonstrates how predictive modeling can be applied during the design phase to ensure the durability of WPCs. 
    more » « less