BACKGROUND Electromagnetic (EM) waves underpin modern society in profound ways. They are used to carry information, enabling broadcast radio and television, mobile telecommunications, and ubiquitous access to data networks through Wi-Fi and form the backbone of our modern broadband internet through optical fibers. In fundamental physics, EM waves serve as an invaluable tool to probe objects from cosmic to atomic scales. For example, the Laser Interferometer Gravitational-Wave Observatory and atomic clocks, which are some of the most precise human-made instruments in the world, rely on EM waves to reach unprecedented accuracies. This has motivated decades of research to develop coherent EM sources over broad spectral ranges with impressive results: Frequencies in the range of tens of gigahertz (radio and microwave regimes) can readily be generated by electronic oscillators. Resonant tunneling diodes enable the generation of millimeter (mm) and terahertz (THz) waves, which span from tens of gigahertz to a few terahertz. At even higher frequencies, up to the petahertz level, which are usually defined as optical frequencies, coherent waves can be generated by solid-state and gas lasers. However, these approaches often suffer from narrow spectral bandwidths, because they usually rely on well-defined energy states of specific materials, which results inmore »
Reading the Tea Leaves: A Comparative Analysis of Threat Intelligence
The term "threat intelligence" has swiftly become a staple buzzword in the computer security industry. The entirely reasonable premise is that, by compiling up-to-date information about known threats (i.e., IP addresses, domain names, file hashes, etc.), recipients of such information may be able to better defend their systems from future attacks. Thus, today a wide array of public and commercial sources distribute threat intelligence data feeds to support this purpose. However, our understanding of this data, its characterization and the extent to which it can meaningfully support its intended uses, is still quite limited. In this paper, we address these gaps by formally defining a set of metrics for characterizing threat intelligence data feeds and using these measures to systematically characterize a broad range of public and commercial sources. Further, we ground our quantitative assessments using external measurements to qualitatively investigate issues of coverage and accuracy. Unfortunately, our measurement results suggest that there are significant limitations and challenges in using existing threat intelligence data for its purported goals.
- Publication Date:
- NSF-PAR ID:
- 10100961
- Journal Name:
- USENIX Security Symposium
- Page Range or eLocation-ID:
- 1-17
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The implementation of Internet of Things (IoT) devices in medical environments, has introduced a growing list of security vulnerabilities and threats. The lack of an extensible big data resource that captures medical device vulnerabilities limits the use of Artificial Intelligence (AI) based cyber defense systems in capturing, detecting, and preventing known and future attacks. We describe a system that generates a repository of Cyber Threat Intelligence (CTI) about various medical devices and their known vulnerabilities from sources such as manufacturer and ICS-CERT vulnerability alerts. We augment the intelligence repository with data sources such as Wikidata and public medical databases. The combined resources are integrated with threat intelligence in our Cybersecurity Knowledge Graph (CKG) from previous research. The augmented graph embeddings are useful in querying relevant information and can help in various AI assisted cybersecurity tasks. Given the integration of multiple resources, we found the augmented CKG produced higher quality graph representations. The augmented CKG produced a 31% increase in the Mean Average Precision (MAP) value, computed over an information retrieval task.
-
One of the staples of network defense is blocking traffic to and from a list of "known bad" sites on the Internet. However, few organizations are in a position to produce such a list themselves, so pragmatically this approach depends on the existence of third-party "threat intelligence" providers who specialize in distributing feeds of unwelcome IP addresses. However, the choice to use such a strategy, let alone which data feeds are trusted for this purpose, is rarely made public and thus little is understood about the deployment of these techniques in the wild. To explore this issue, we have designed and implemented a technique to infer proactive traffic blocking on a remote host and, through a series of measurements, to associate that blocking with the use of particular IP blocklists. In a pilot study of 220K US hosts, we find as many as one fourth of the hosts appear to blocklist based on some source of threat intelligence data, and about 2% use one of the 9 particular third-party blocklists that we evaluated.
-
Cyber Threat Intelligence (CTI) is information describing threat vectors, vulnerabilities, and attacks and is often used as training data for AI-based cyber defense systems such as Cybersecurity Knowledge Graphs (CKG). There is a strong need to develop community-accessible datasets to train existing AI-based cybersecurity pipelines to efficiently and accurately extract meaningful insights from CTI. We have created an initial unstructured CTI corpus from a variety of open sources that we are using to train and test cybersecurity entity models using the spaCy framework and exploring self-learning methods to automatically recognize cybersecurity entities. We also describe methods to apply cybersecurity domain entity linking with existing world knowledge from Wikidata. Our future work will survey and test spaCy NLP tools, and create methods for continuous integration of new information extracted from text.
-
Aquatic environments encompass the world’s most extensive habitats, rich with sounds produced by a diversity of animals. Passive acoustic monitoring (PAM) is an increasingly accessible remote sensing technology that uses hydrophones to listen to the underwater world and represents an unprecedented, non-invasive method to monitor underwater environments. This information can assist in the delineation of biologically important areas via detection of sound-producing species or characterization of ecosystem type and condition, inferred from the acoustic properties of the local soundscape. At a time when worldwide biodiversity is in significant decline and underwater soundscapes are being altered as a result of anthropogenic impacts, there is a need to document, quantify, and understand biotic sound sources–potentially before they disappear. A significant step toward these goals is the development of a web-based, open-access platform that provides: (1) a reference library of known and unknown biological sound sources (by integrating and expanding existing libraries around the world); (2) a data repository portal for annotated and unannotated audio recordings of single sources and of soundscapes; (3) a training platform for artificial intelligence algorithms for signal detection and classification; and (4) a citizen science-based application for public users. Although individually, these resources are often met on regionalmore »