skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Clairvoyance: Inferring Blocklist Use on the Internet
One of the staples of network defense is blocking traffic to and from a list of "known bad" sites on the Internet. However, few organizations are in a position to produce such a list themselves, so pragmatically this approach depends on the existence of third-party "threat intelligence" providers who specialize in distributing feeds of unwelcome IP addresses. However, the choice to use such a strategy, let alone which data feeds are trusted for this purpose, is rarely made public and thus little is understood about the deployment of these techniques in the wild. To explore this issue, we have designed and implemented a technique to infer proactive traffic blocking on a remote host and, through a series of measurements, to associate that blocking with the use of particular IP blocklists. In a pilot study of 220K US hosts, we find as many as one fourth of the hosts appear to blocklist based on some source of threat intelligence data, and about 2% use one of the 9 particular third-party blocklists that we evaluated.  more » « less
Award ID(s):
1705050 1629973
PAR ID:
10287220
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Passive and Active Measurement (PAM 2021)
Page Range / eLocation ID:
57 - 75
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The term "threat intelligence" has swiftly become a staple buzzword in the computer security industry. The entirely reasonable premise is that, by compiling up-to-date information about known threats (i.e., IP addresses, domain names, file hashes, etc.), recipients of such information may be able to better defend their systems from future attacks. Thus, today a wide array of public and commercial sources distribute threat intelligence data feeds to support this purpose. However, our understanding of this data, its characterization and the extent to which it can meaningfully support its intended uses, is still quite limited. In this paper, we address these gaps by formally defining a set of metrics for characterizing threat intelligence data feeds and using these measures to systematically characterize a broad range of public and commercial sources. Further, we ground our quantitative assessments using external measurements to qualitatively investigate issues of coverage and accuracy. Unfortunately, our measurement results suggest that there are significant limitations and challenges in using existing threat intelligence data for its purported goals. 
    more » « less
  2. Since the exhaustion of unallocated IP addresses at the Internet Assigned Numbers Authority (IANA), a market for IPv4 addresses has emerged. In complement to purchasing address space, leasing IP addresses is becoming increasingly popular. Leasing provides a cost-effective alternative for organizations that seek to scale up without a high upfront investment. However, malicious actors also benefit from leasing as it enables them to rapidly cycle through different addresses, circumventing security measures such as IP blocklisting. We explore the emerging IP leasing market and its implications for Internet security. We examine leasing market data, leveraging blocklists as an indirect measure of involvement in various forms of network abuse. In February 2025, leased prefixes were 2.89× more likely to be flagged by blocklists compared to non-leased prefixes. This result raises questions about whether the IP leasing market should be subject to closer scrutiny. 
    more » « less
  3. State-of-the-art System-on-Chip (SoC) designs consist of many Intellectual Property (IP) cores that interact using a Network-on-Chip (NoC) architecture. SoC designers increasingly rely on global supply chains for obtaining third-party IPs. In addition to inherent vulnerabilities associated with utilizing third-party IPs, NoC based SoCs enable attackers to exploit the distributed nature of NoC and its connectivity with various IPs to launch a plethora of attacks. Specifically, Denial-of-Service (DoS) attacks pose a serious threat in degrading the SoC performance by flooding the NoC with unnecessary packets. In this paper, we present a machine learning-based runtime monitoring mechanism to detect DoS attacks. The models are statically trained and used for runtime attack detection leading to minimum runtime performance overhead. Our approach is capable of detecting DoS attacks with high accuracy, even in the presence of unpredictable NoC traffic patterns caused by various application mappings. We extensively explore machine learning models and features to provide a comprehensive study on how to use machine learning for DoS attack detection in NoC-based SoCs. 
    more » « less
  4. How can we build a definitive capability for tracking C2 servers? Having a large-scale continuously updating capability would be essential for understanding the spatiotemporal behaviors of C2 servers and, ultimately, for helping contain botnet activities. Unfortunately, existing information from threat intelligence feeds and previous works is often limited to a specific set of botnet families or short-term data collections. Responding to this need, we present C2Store, an initiative to provide the most comprehensive information on C2 servers. Our work makes the following contributions: (a) we develop techniques to collect, verify, and combine C2 server addresses from five types of sources, including uncommon platforms, such as GitHub and Twitter; (b) we create an open-access annotated database of 335,967 C2 servers across 133 malware families, which supports semantically-rich and smart queries; (c) we identify surprising behaviors of C2 servers with respect to their spatiotemporal patterns and behaviors. First, we successfully mine Twitter and GitHub and identify C2 servers with a precision of 97% and 94%, respectively. Furthermore, we find that the threat feeds identify only 24% of the servers in our database, with Twitter and GitHub providing 32%. A surprising observation is the identification of 250 IP addresses, each of which hosts more than 5 C2 servers for different botnet families at the same time. Overall, we envision C2Store as an ongoing effort that will facilitate research by providing timely, historical, and comprehensive C2 server information by critically combining multiple sources of information. 
    more » « less
  5. null (Ed.)
    Abstract Despite the prevalence of Internet of Things (IoT) devices, there is little information about the purpose and risks of the Internet traffic these devices generate, and consumers have limited options for controlling those risks. A key open question is whether one can mitigate these risks by automatically blocking some of the Internet connections from IoT devices, without rendering the devices inoperable. In this paper, we address this question by developing a rigorous methodology that relies on automated IoT-device experimentation to reveal which network connections (and the information they expose) are essential, and which are not. We further develop strategies to automatically classify network traffic destinations as either required ( i.e. , their traffic is essential for devices to work properly) or not, hence allowing firewall rules to block traffic sent to non-required destinations without breaking the functionality of the device. We find that indeed 16 among the 31 devices we tested have at least one blockable non-required destination, with the maximum number of blockable destinations for a device being 11. We further analyze the destination of network traffic and find that all third parties observed in our experiments are blockable, while first and support parties are neither uniformly required or non-required. Finally, we demonstrate the limitations of existing blocklists on IoT traffic, propose a set of guidelines for automatically limiting non-essential IoT traffic, and we develop a prototype system that implements these guidelines. 
    more » « less