skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessing Methods for Developing an Engineering Identity in the Classroom
Engineering identity is an attractive lens being used by engineering education researchers to help understand the factors contributing to student retention and persistence in engineering. However, few studies have linked pedagogical approaches for developing an identity to their impact on engineering identity development. This research paper investigates the difference in students’ engineering identity, engineering performance/competence, engineering interest, recognition in engineering, and affect towards six professional engineering practices in two difference engineering departments: a traditional program that implicitly supports engineering identity formation and a non-traditional program that explicitly supports engineering identity formation. Survey data was collected from a total of 184 students (153 from the traditional department and 31 from the non-traditional department). Using independent samples t-tests, results show that engineering identity was higher for students in the traditional department than for students in the non-traditional department. However, students in the non-traditional department showed statistically significantly higher levels of collaboration compared to the traditional department. This work contributes to the ongoing conversation about engineering identity development by beginning to explore the pedagogical approaches that impact students’ engineering attitudes. Implications of results are discussed.  more » « less
Award ID(s):
1636449
PAR ID:
10100969
Author(s) / Creator(s):
Date Published:
Journal Name:
2019 ASEE Annual Conference & Exposition, Tampa, FL
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Engineering identity is an attractive lens being used by engineering education researchers to help understand the factors contributing to student retention and persistence in engineering. However, few studies have linked pedagogical approaches for developing an identity to their impact on engineering identity development. This research paper investigates the difference in students’ engineering identity, engineering performance/competence, engineering interest, recognition in engineering, and affect towards six professional engineering practices in two difference engineering departments: a traditional program that implicitly supports engineering identity formation and a non-traditional program that explicitly supports engineering identity formation. Survey data was collected from a total of 184 students (153 from the traditional department and 31 from the non-traditional department). Using independent samples t-tests, results show that engineering identity was higher for students in the traditional department than for students in the non-traditional department. However, students in the non-traditional department showed statistically significantly higher levels of collaboration compared to the traditional department. This work contributes to the ongoing conversation about engineering identity development by beginning to explore the pedagogical approaches that impact students’ engineering attitudes. Implications of results are discussed. 
    more » « less
  2. Electrical and computer engineering technologies have evolved into dynamic, complex systems that profoundly change the world we live in. Designing these systems requires not only technical knowledge and skills but also new ways of thinking and the development of social, professional and ethical responsibility. A large electrical and computer engineering department at a Midwestern public university is transforming to a more agile, less traditional organization to better respond to student, industry and society needs. This is being done through new structures for faculty collaboration and facilitated through departmental change processes. Ironically, an impetus behind this effort was a failed attempt at department-wide curricular reform. This failure led to the recognition of the need for more systemic change, and a project emerged from over two years of efforts. The project uses a cross-functional, collaborative instructional model for course design and professional formation, called X-teams. X-teams are reshaping the core technical ECE curricula in the sophomore and junior years through pedagogical approaches that (a) promote design thinking, systems thinking, professional skills such as leadership, and inclusion; (b) contextualize course concepts; and (c) stimulate creative, socio-technical-minded development of ECE technologies. An X-team is comprised of ECE faculty members including the primary instructor, an engineering education and/or design faculty member, an industry practitioner, context experts, instructional specialists (as needed to support the process of teaching, including effective inquiry and inclusive teaching) and student teaching assistants. X-teams use an iterative design thinking process and reflection to explore pedagogical strategies. X-teams are also serving as change agents for the rest of the department through communities of practice referred to as Y-circles. Y-circles, comprised of X-team members, faculty, staff, and students, engage in a process of discovery and inquiry to bridge the engineering education research-to-practice gap. Research studies are being conducted to answer questions to understand (1) how educators involved in X-teams use design thinking to create new pedagogical solutions; (2) how the middle years affect student professional ECE identity development as design thinkers; (3) how ECE students overcome barriers, make choices, and persist along their educational and career paths; and (4) the effects of department structures, policies, and procedures on faculty attitudes, motivation and actions. This paper will present the efforts that led up to the project, including failures and opportunities. It will summarize the project, describe related work, and present early progress implementing new approaches. 
    more » « less
  3. This Innovative Practice Full Paper presents findings on the impact of framing Engineering as a prosocial career on high school students’ engineering identity formation. Engineers are often stereotyped as people who work alone and are primarily motivated by financial rewards. This stereotype may deter students who value altruism from pursuing engineering career pathways. In reality, many engineers work in collaborative, creative, interdisciplinary fields on problems that positively affect society. This work examined the impacts of framing engineering as altruistic on the engineering identity development of low socioeconomic status, predominantly Black high school students in an urban region of the Southern United States. The program consisted of a summer camp and academic year activities that included mentoring from underrepresented minority undergraduate engineering students. The program content was aligned to the US National Academy of Engineering’s Grand Challenges for Engineering (GCEs), a list of 14 critical challenges that society faces that will require engineering solutions to address. Each of these challenges highlights the exciting ways that a career in engineering allows students to serve their communities and improve the lives of others. A convergent, mixed-methods approach was used to understand how this program affected students’ perceptions of and interest in engineering. These results were compared to those for a traditional STEM Saturday informal education program with participants from the same demographic group. The altruistic framing resulted in students’ having a broader definition of engineering as well as increased interest in engineering as a potential career. 
    more » « less
  4. This Research-to-Practice Full Paper presents the redesign of a course project to promote student professional formation in engineering in the Electrical and Computer Engineering Department at Iowa State University. This is part of a larger effort to redesign core courses in the sophomore and junior years through a collaborative instructional model and pedagogical approaches that promote professional formation. A required sophomore course on embedded computer systems has been assessed and revised over multiple semesters. The redesign of the project was initiated with the purpose of promoting student professional formation, interest, autonomy and innovation, and it was undertaken using a collaborative process. This paper describes the course, final project, redesign process, assessment, results and future work. Several conclusions from the research may be useful to other educators. A small change to the course project yielded positive effects in interest and autonomy and may influence longer term effects of the project. There was evidence of difference in engagement with the project. The difference observed was not only due to option selected by students but why students selected the option. 
    more » « less
  5. In 2020, Montana State University initiated a five-year NSF-funded Revolutionizing Engineering Departments (RED) project with the vision of transforming the traditional topic-focused course structure in environmental engineering into an integrated project-based curriculum (IPBC) that supports a climate of collaborative and continuous learning among faculty and students. The curriculum redesign process engaged faculty in an extensive consensus-building process to define desired student learning outcomes for the program. In the transformed curriculum, faculty collectively agreed to integrate systems thinking, sustainability, and professionalism competencies and to cultivate students’ identity as environmental engineers throughout the degree. To achieve these goals, there must be a level of shared meaning around the four constructs of interest—systems thinking, sustainability, professionalism, environmental engineering—to guide pedagogical decision making among faculty. A qualitative cultural assessment was conducted to investigate, analyze, and describe the shared meanings faculty hold around the four constructs. The goal of the assessment was to uncover areas of shared meaning with the strongest consensus within and across constructs. By eliciting and describing “definitions by consensus,” faculty will be able to generate consistency in teaching and assessment practices throughout the curriculum. The culture assessment process undertaken by the department and its outcomes will be of interest to other programs seeking to foster collaborative teaching and to enhance collective ownership of degree program learning outcomes. 
    more » « less