skip to main content


Title: Riding the Wave of Change in Electrical and Computer Engineering
Electrical and computer engineering technologies have evolved into dynamic, complex systems that profoundly change the world we live in. Designing these systems requires not only technical knowledge and skills but also new ways of thinking and the development of social, professional and ethical responsibility. A large electrical and computer engineering department at a Midwestern public university is transforming to a more agile, less traditional organization to better respond to student, industry and society needs. This is being done through new structures for faculty collaboration and facilitated through departmental change processes. Ironically, an impetus behind this effort was a failed attempt at department-wide curricular reform. This failure led to the recognition of the need for more systemic change, and a project emerged from over two years of efforts. The project uses a cross-functional, collaborative instructional model for course design and professional formation, called X-teams. X-teams are reshaping the core technical ECE curricula in the sophomore and junior years through pedagogical approaches that (a) promote design thinking, systems thinking, professional skills such as leadership, and inclusion; (b) contextualize course concepts; and (c) stimulate creative, socio-technical-minded development of ECE technologies. An X-team is comprised of ECE faculty members including the primary instructor, an engineering education and/or design faculty member, an industry practitioner, context experts, instructional specialists (as needed to support the process of teaching, including effective inquiry and inclusive teaching) and student teaching assistants. X-teams use an iterative design thinking process and reflection to explore pedagogical strategies. X-teams are also serving as change agents for the rest of the department through communities of practice referred to as Y-circles. Y-circles, comprised of X-team members, faculty, staff, and students, engage in a process of discovery and inquiry to bridge the engineering education research-to-practice gap. Research studies are being conducted to answer questions to understand (1) how educators involved in X-teams use design thinking to create new pedagogical solutions; (2) how the middle years affect student professional ECE identity development as design thinkers; (3) how ECE students overcome barriers, make choices, and persist along their educational and career paths; and (4) the effects of department structures, policies, and procedures on faculty attitudes, motivation and actions. This paper will present the efforts that led up to the project, including failures and opportunities. It will summarize the project, describe related work, and present early progress implementing new approaches.  more » « less
Award ID(s):
1623125
NSF-PAR ID:
10337976
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
2017 ASEE Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The discipline of biomedical engineering (BME) was born from recognition that engineers need to help solve emerging biologically based problems that impact medical device design, therapeutics, diagnostics, and basic discovery. While economic indicators point to significant growth in the field, BME students are reporting significant challenges in competing for jobs against traditional engineering graduates (e.g. mechanical and electrical) and finding post-undergraduate employment. BME programs are therefore in great need of curricula that promote clear professional formation and prepare graduates to be effective in a fast growing and changing industry. Moreover, these changes must be implemented in a challenging environment in which technology and stakeholder (e.g. industry, medical schools, regulatory agencies) priorities are changing rapidly. In 2016, our department created a new model of instructional change in which the undergraduate curriculum is closely tied to the evolution of the field of BME, and in which faculty, staff, and students work together to define and implement current content and best practices in teaching. Through an Iterative Instructional Design Sequence, the department has implemented seven BME-in-Practice modules over two years. A total of 36 faculty, post docs, doctoral candidates, master’s students, and fourth year students have participated in creating the one-credit BME-in-Practice Modules exploring Tissue Engineering, Medical Device Development, Drug Development, Regulations, and Neural Engineering. A total of 23 post docs, graduate students and undergraduates participated on a teaching team responsible for teaching a BME-in-Practice module. Each module was developed to be four weeks long and met at least six hour/week. Two of the seven Modules were iterated upon from year one to year two. Modules were designed to be highly experiential where the majority of work can be completed in the classroom. A total of 50 unique undergraduates elected to enroll in the seven Modules, 73.33% of which were women. Data collected over the last two years indicate that Module students perceived significant learning outcomes and the Module teaching teams were successful in creating student centered environments. Results suggest that this mechanism enables effective, rapid adaptation of BME curriculum to meet the changing needs of BME students, while increasing student-centered engagement in the engineering classroom. Findings also suggest that this curricular is an example of an intentional curricular change that is particularly impactful for women engineering students. 
    more » « less
  2. A 2019 report from the National Academies on Minority Serving Institutions (MSIs) concluded that MSIs need to change their culture to successfully serve students with marginalized racial and/or ethnic identities. The report recommends institutional responsiveness to meet students “where they are,” metaphorically, creating supportive campus environments and providing tailored academic and social support structures. In recent years, the faculty, staff, and administrators at California State University, Los Angeles have made significant efforts to enhance student success through multiple initiatives including a summer bridge program, first-year in engineering program, etc. However, it has become clear that more profound changes are needed to create a culture that meets students “where they are.” In 2020, we were awarded NSF support for Eco-STEM, an initiative designed to change a system that demands "college-ready" students into one that is "student-ready." Aimed at shifting the deficit mindset prevailing in engineering education, the Eco-STEM project embraces an asset-based ecosystem model that thinks of education as cultivation, and ideas as seeds we are planting, rather than a system of standards and quality checks. This significant paradigm and culture transformation is accomplished through: 1) The Eco-STEM Faculty Fellows’ Community of Practice (CoP), which employs critically reflective dialogue[ ][ ] to enhance the learning environment using asset-based learner-centered instructional approaches; 2) A Leadership CoP with department chairs and program directors that guides cultural change at the department/program level; 3) A Facilitators’ CoP that prepares facilitators to lead, sustain, update, and expand the Faculty and Leadership CoPs; 4) Reform of the teaching evaluation system to sustain the cultural changes. This paper presents the progress and preliminary findings of the Eco-STEM project. During the first project year, the project team formulated the curriculum for the Faculty CoP with a focus on inclusive pedagogy, community cultural wealth, and community building, developed a classroom peer observation tool to provide formative data for teaching reflection, and designed research inquiry tools. The latter investigates the following research questions: 1) To what extent do the Eco-STEM CoPs effectively shift the mental models of participants from a factory-like model to an ecosystem model of education? 2) To what extent does this shift support an emphasis on the assets of our students, faculty, and staff members and, in turn, allow for enhanced motivation, excellence and success? 3) To what extent do new faculty assessment tools designed to provide feedback that reflects ecosystem-centric principles and values allow for individuals within the system to thrive? In Fall 2021, the first cohort of Eco-STEM Faculty Fellows were recruited, and rich conversations and in-depth reflections in our CoP meetings indicated Fellows’ positive responses to both the CoP curriculum and facilitation practices. This paper offers a work-in-progress introduction to the Eco-STEM project, including the Faculty CoP, the classroom peer observation tool, and the proposed research instruments. We hope this work will cultivate broader conversations within the engineering education research community about cultural change in engineering education and methods towards its implementation. 
    more » « less
  3. null (Ed.)
    At the start of their work for the National Science Foundation’s Revolutionizing Engineering Departments (RED) Program (IUSE/Professional Formation of Engineers, NSF 19-614), RED teams face a variety of challenges. Not only must they craft a shared vision for their projects and create strategic partnerships across their campuses to move the project forward, they must also form a new team and communicate effectively within the team. Our work with RED teams over the past 5 years has highlighted the common challenges these teams face at the start, and for that reason, we have developed the RED Start Up Session, a ½ day workshop that establishes best practices for RED teams’ work and allows for early successes in these five year projects. As the RED Participatory Action Research team (REDPAR)--comprised of individuals from Rose-Hulman Institute of Technology and the University of Washington--we have taken the research data collected as we work with RED teams and translated it into practical strategies that can benefit RED teams as they embark on their projects. This presentation will focus on the content and organization of the Start Up Session and how these lessons learned can contribute to the furthering of the goals of the RED program: to design “revolutionary new approaches to engineering education,” focusing on “organizational and cultural change within the departments, involving students, faculty, staff, and industry in rethinking what it means to provide an engineering program.” We see the Start Up Session as an important first step in the RED team establishing an identity as a team and learning how to work effectively together. We also encourage new RED teams to learn from the past, through a panel discussion with current RED team members who fill various roles on the teams: engineering education researcher, project manager, project PI, disciplinary faculty, social scientist, and others. By presenting our findings from the Start Up Session at ASEE, we believe we can contribute to the national conversation regarding change in engineering education as it is evidenced in the RED team’s work. 
    more » « less
  4. In 2016, our biomedical engineering (BME) department created a new model of instructional change in which undergraduate BME curriculum is closely tied to the evolution of the field of BME, and in which faculty, staff, and students work together to define and implement current content and best practices in teaching. Through an Iterative Instructional Design Sequence, the department has implemented seven BME-in-Practice modules over two years. A total of 36 faculty, post docs, doctoral candidates, master’s students, and fourth year students participated in creating one-credit BME-in-Practice Modules exploring Tissue Engineering, Medical Device Development, Drug Development, Regulations, and Neural Engineering. A subset of these post docs, graduate students and undergraduates (23) also participated in teaching teams of two-three per Module and were responsible for teaching one of the BME-in-Practice Modules. Modules were designed to be highly experiential where the majority of work could be completed in the classroom. A total of 50 unique undergraduates elected to enroll in the seven Modules, 73.33% of which were women. Data collected over the first two years indicate that Module students perceived significant learning outcomes and the Module teaching teams were successful in creating student centered environments. Results suggest that this mechanism enables effective, rapid adaptation of BME curriculum to meet the changing needs of BME students, while increasing student-centered engagement in the engineering classroom. Findings also suggest that this approach is an example of an intentional curricular change that is particularly impactful for women engineering students. 
    more » « less
  5. The lack of diversity and inclusion has been a major challenge affecting engineering programs all over the United States. This problem has been persistent over the years and has been difficult to address despite considerable amount of attention, enriched conversations, and money that has been put towards addressing it. One of the reasons behind this lack of diversity could be the presence of exclusionary behaviors, such as bias and discrimination that permeate the culture of engineering. To address this “wicked” problem, a deeper understanding of current culture and of potential change strategies toward integrating inclusion and diversity is necessary. Our larger NSF funded research project seeks to achieve this understanding through design thinking. While design thinking has been documented to successfully achieve desired outcomes for numerous other problems, its effectiveness as a tool to understand and solve the “wicked problem” of transformation of disciplinary culture related to diversity and inclusion in engineering is not yet known. This Work-in-Progress paper will address the effectiveness of using a design thinking approach by answering the research question: How did stakeholder participants perceive the impact of design sessions on their understanding and value of diversity and inclusion in the professional formation of biomedical engineers? To address this research question, our research team is coordinating six design sessions within each of two engineering schools: Electrical and Computer Engineering (ECE) and Biomedical Engineering (BME) at a large Midwest University. Currently, we have completed the initial phases of the design sessions in the BME school, and hence this paper focuses on insights from preliminary data analysis of BME Design sessions. BME design sessions were conducted with 15 key stakeholders from the program including students, faculty, staff and administrators. Each of the six design session was two hours long. The research team facilitated the inspiration and ideation phase of the design thinking process throughout. Facilitation involved providing prompts and activities to guide the stakeholders through the design thinking processes of problem identification, problem scoping, and prototype solution generation related to diversity and inclusion within the school culture. A mixed-methods approach involving both qualitative and quantitative data analysis is being used to evaluate the efficacy of design thinking as a tool to address diversity and inclusion in professional formation of engineers. Artifacts such as journey maps, culture maps, and design notebooks generated by our stakeholders throughout the design sessions will be qualitatively analyzed to evaluate the role and effectiveness of design thinking in shaping a more diverse and inclusive culture within BME and, eventually ECE. Following the design sessions, participants were interviewed one-on-one to understand how their thoughts about diversity and inclusion in professional formation of biomedical engineers may have changed, and to gather participants’ self-assessment of the design process. Coupled with the interviews, an online survey was administered to assess the participants’ ranking of the solutions generated at the conclusion design sessions in terms of their novelty, importance and feasibility for implementation within their school. This Work-in-Progress paper will discuss relevant findings from initial quantitative analyses of the data collected from the post-design session surveys and is an interim report evaluating participants’ perceptions of the impact of these design sessions on their understanding of diversity and inclusion in professional formation of biomedical engineers. 
    more » « less