skip to main content


Title: Optical dipole trapping of Holmium
Neutral Holmium′s 128 ground hyperfine states, the most of any non-radioactive element, is a testbed for quantum control of a very high dimensional Hilbert space, and offers a promising platform for quantum computing. Its high magnetic moment also makes magnetic trapping a potentially viable alternative to optical trapping. Previously we have cooled Holmium atoms in a MOT on a 410.5 nm transition, characterized its Rydberg spectra, and made measurements of the dynamic scalar and tensor polarizabilities. We report here on progress towards narrow line cooling and magnetic trapping of single atoms.  more » « less
Award ID(s):
1707854
NSF-PAR ID:
10100997
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
APS DAMOP meeting 2019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neutral Holmiums 128 ground hyperfi ne states, the most of any non-radioactive element, is a test bed for quantum con- trol of a very high dimensional Hilbert space, and offers a promising platform for quantum computing. Previously we have cooled Holmium atoms in a MOT on a 410.5 nm transition and characterized its Ry- dberg spectra. We report here on the first optical dipole trapping of Holmium with a 532 nm wavelength trap laser. The trap lifetime is close to 1 sec., limited by photon scattering from nearby transitions. The trapped atoms are used to measure the dynamic scalar and tensor polarizabilities which are compared with calculations based on measured oscillator strengths. We also report progress towards narrow line cooling and magnetic trapping of single atoms. 
    more » « less
  2. Optically active defects in solid-state systems have many applications in quantum information and sensing. However, unlike free atoms, which have fixed optical transition frequencies, the inhomogeneous broadening of the transitions in solid-state environments limit their use as identical scatterers for such applications. Here we show that crystals of argon and neon prepared in a closed-cycle cryostat doped with thulium atoms at cryogenic temperatures are an exception. High resolution absorption and emission spectroscopy show that the 1140 nm magnetic dipole transition is split into multiple components. The origin of this splitting is likely a combination of different classes of trapping sites, crystal field effects within each site, and hyperfine interactions. The individual lines have ensemble widths as small as 0.6 GHz, which temperature dependence and pump-probe spectroscopy indicate is likely a homogeneous effect, suggesting inhomogeneity is well below the GHz scale. 
    more » « less
  3. Density functional theory calculations are combined with time-resolved photoluminescence experiments to identify the species responsible for the reversible trapping of holes following photoexcitation of InP/ZnSe/ZnS core/shell/shell quantum dots (QDs) having excess indium in the shell [P. Cavanaugh et al., J. Chem. Phys. 155, 244705 (2021)]. Several possible assignments are considered, and a substitutional indium adjacent to a zinc vacancy, In3+/VZn2−, is found to be the most likely. This assignment is consistent with the observation that trapping occurs only when the QD has excess indium and is supported by experiments showing that the addition of zinc oleate or acetate decreases the extent of trapping, presumably by filling some of the vacancy traps. We also show that the addition of alkyl carboxylic acids causes increased trapping, presumably by the creation of additional zinc vacancies. The calculations show that either a single In2+ ion or an In2+–In3+ dimer is much too easily oxidized to form the reversible traps observed experimentally, while In3+ is far too difficult to oxidize. Additional experimental data on InP/ZnSe/ZnS QDs synthesized in the absence of chloride demonstrates that the reversible traps are not associated with Cl−. However, a zinc vacancy adjacent to a substitutional indium is calculated to have its highest occupied orbitals about 1 eV above the top of the valence band of bulk ZnSe, in the appropriate energy range to act as reversible traps for quantum confined holes in the InP valence band. The associated orbitals are predominantly composed of p orbitals on the Se atoms adjacent to the Zn vacancy.

     
    more » « less
  4. BACKGROUND The past decade has witnessed considerable progress toward the creation of new quantum technologies. Substantial advances in present leading qubit technologies, which are based on superconductors, semiconductors, trapped ions, or neutral atoms, will undoubtedly be made in the years ahead. Beyond these present technologies, there exist blueprints for topological qubits, which leverage fundamentally different physics for improved qubit performance. These qubits exploit the fact that quasiparticles of topological quantum states allow quantum information to be encoded and processed in a nonlocal manner, providing inherent protection against decoherence and potentially overcoming a major challenge of the present generation of qubits. Although still far from being experimentally realized, the potential benefits of this approach are evident. The inherent protection against decoherence implies better scalability, promising a considerable reduction in the number of qubits needed for error correction. Transcending possible technological applications, the underlying physics is rife with exciting concepts and challenges, including topological superconductors, non-abelian anyons such as Majorana zero modes (MZMs), and non-abelian quantum statistics.­­ ADVANCES In a wide-ranging and ongoing effort, numerous potential material platforms are being explored that may realize the required topological quantum states. Non-abelian anyons were first predicted as quasiparticles of topological states known as fractional quantum Hall states, which are formed when electrons move in a plane subject to a strong perpendicular magnetic field. The prediction that hybrid materials that combine topological insulators and conventional superconductors can support localized MZMs, the simplest type of non-abelian anyon, brought entirely new material platforms into view. These include, among others, semiconductor-superconductor hybrids, magnetic adatoms on superconducting substrates, and Fe-based superconductors. One-dimensional systems are playing a particularly prominent role, with blueprints for quantum information applications being most developed for hybrid semiconductor-superconductor systems. There have been numerous attempts to observe non-abelian anyons in the laboratory. Several experimental efforts observed signatures that are consistent with some of the theoretical predictions for MZMs. A few extensively studied platforms were subjected to intense scrutiny and in-depth analyses of alternative interpretations, revealing a more complex reality than anticipated, with multiple possible interpretations of the data. Because advances in our understanding of a physical system often rely on discrepancies between experiment and theory, this has already led to an improved understanding of Majorana signatures; however, our ability to detect and manipulate non-abelian anyons such as MZMs remains in its infancy. Future work can build on improved materials in some of the existing platforms but may also exploit new materials such as van der Waals heterostructures, including twisted layers, which promise many new options for engineering topological phases of matter. OUTLOOK Experimentally establishing the existence of non-abelian anyons constitutes an outstandingly worthwhile goal, not only from the point of view of fundamental physics but also because of their potential applications. Future progress will be accelerated if claims of Majorana discoveries are based on experimental tests that go substantially beyond indicators such as zero-bias peaks that, at best, suggest consistency with a Majorana interpretation. It will be equally important that these discoveries build on an excellent understanding of the underlying material systems. Most likely, further material improvements of existing platforms and the exploration of new material platforms will both be important avenues for progress toward obtaining solid evidence for MZMs. Once that has been achieved, we can hope to explore—and harness—the fascinating physics of non-abelian anyons such as the topologically protected ground state manifold and non-abelian statistics. Proposed topological platforms. (Left) Proposed state of electrons in a high magnetic field (even-denominator fractional quantum Hall states) are predicted to host Majorana quasiparticles. (Right) Hybrid structures of superconductors and other materials have also been proposed to host such quasiparticles and can be tailored to create topological quantum bits based on Majoranas. 
    more » « less
  5. Optical levitation of dielectric particles in vacuum is a powerful technique for precision measurements, testing fundamental physics, and quantum information science. Conventional optical tweezers require bulky optical components for trapping and detection. Here, we design and fabricate an ultrathin dielectric metalens with a high numerical aperture of 0.88 at 1064 nm in vacuum. It consists of 500-nm-thick silicon nano-antennas, which are compatible with an ultrahigh vacuum. We demonstrate optical levitation of nanoparticles in vacuum with a single metalens. The trapping frequency can be tuned by changing the laser power and polarization. We also transfer a levitated nanoparticle between two separated optical tweezers. Optical levitation with an ultrathin metalens in vacuum provides opportunities for a wide range of applications including on-chip sensing. Such metalenses will also be useful for trapping ultracold atoms and molecules.

     
    more » « less