skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High resolution spectroscopy of thulium atoms implanted in solid noble gas crystals
Optically active defects in solid-state systems have many applications in quantum information and sensing. However, unlike free atoms, which have fixed optical transition frequencies, the inhomogeneous broadening of the transitions in solid-state environments limit their use as identical scatterers for such applications. Here we show that crystals of argon and neon prepared in a closed-cycle cryostat doped with thulium atoms at cryogenic temperatures are an exception. High resolution absorption and emission spectroscopy show that the 1140 nm magnetic dipole transition is split into multiple components. The origin of this splitting is likely a combination of different classes of trapping sites, crystal field effects within each site, and hyperfine interactions. The individual lines have ensemble widths as small as 0.6 GHz, which temperature dependence and pump-probe spectroscopy indicate is likely a homogeneous effect, suggesting inhomogeneity is well below the GHz scale.  more » « less
Award ID(s):
2310394
PAR ID:
10494244
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review B
Volume:
108
Issue:
21
ISSN:
2469-9950
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Using transition metal ions for spin-based applications, such as electron paramagnetic resonance imaging (EPRI) or quantum computation, requires a clear understanding of how local chemistry influences spin properties. Herein we report a series of four ionic complexes to provide the first systematic study of one aspect of local chemistry on the V( iv ) spin – the counterion. To do so, the four complexes (Et 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 1 ), ( n -Bu 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 2 ), ( n -Hex 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 3 ), and ( n -Oct 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 4 ) were probed by EPR spectroscopy in solid state and solution. Room temperature, solution X-band ( ca. 9.8 GHz) continuous-wave electron paramagnetic resonance (CW-EPR) spectroscopy revealed an increasing linewidth with larger cations, likely a counterion-controlled tumbling in solution via ion pairing. In the solid state, variable-temperature (5–180 K) X-band ( ca. 9.4 GHz) pulsed EPR studies of 1–4 in o -terphenyl glass demonstrated no effect on spin–lattice relaxation times ( T 1 ), indicating little role for the counterion on this parameter. However, the phase memory time ( T m ) of 1 below 100 K is markedly smaller than those of 2–4 . This result is counterintuitive, as 2–4 are relatively richer in 1 H nuclear spin, hence, expected to have shorter T m . Thus, these data suggest an important role for counterion methyl groups on T m , and moreover provide the first instance of a lengthening T m with increasing nuclear spin quantity on a molecule. 
    more » « less
  2. Abstract Solid state quantum defects are promising candidates for scalable quantum information systems which can be seamlessly integrated with the conventional semiconductor electronic devices within the 3D monolithically integrated hybrid classical-quantum devices. Diamond nitrogen-vacancy (NV) center defects are the representative examples, but the controlled positioning of an NV center within bulk diamond is an outstanding challenge. Furthermore, quantum defect properties may not be easily tuned for bulk crystalline quantum defects. In comparison, 2D semiconductors, such as transition metal dichalcogenides (TMDs), are promising solid platform to host a quantum defect with tunable properties and a possibility of position control. Here, we computationally discover a promising defect family for spin qubit realization in 2D TMDs. The defects consist of transition metal atoms substituted at chalcogen sites with desirable spin-triplet ground state, zero-field splitting in the tens of GHz, and strong zero-phonon coupling to optical transitions in the highly desirable telecom band. 
    more » « less
  3. Abstract The Dicke model describes the cooperative interaction of an ensemble of two-level atoms with a single-mode photonic field and exhibits a quantum phase transition as a function of light–matter coupling strength. Extending this model by incorporating short-range atom–atom interactions makes the problem intractable but is expected to produce new physical phenomena and phases. Here, we simulate such an extended Dicke model using a crystal of ErFeO3, where the role of atoms (photons) is played by Er3+spins (Fe3+magnons). Through terahertz spectroscopy and magnetocaloric effect measurements as a function of temperature and magnetic field, we demonstrated the existence of a novel atomically ordered phase in addition to the superradiant and normal phases that are expected from the standard Dicke model. Further, we elucidated the nature of the phase boundaries in the temperature–magnetic-field phase diagram, identifying both first-order and second-order phase transitions. These results lay the foundation for studying multiatomic quantum optics models using well-characterized many-body solid-state systems. 
    more » « less
  4. Aluminum monochloride (AlCl) has been proposed as a promising candidate for laser cooling to ultracold temperatures, and recent spectroscopy results support this prediction. It is challenging to produce large numbers of AlCl molecules because it is a highly reactive open-shell molecule and must be generated in situ . Here we show that pulsed-laser ablation of stable, non-toxic mixtures of Al with alkali or alkaline earth chlorides, denoted XCl n , can provide a robust and reliable source of cold AlCl molecules. Both the chemical identity of XCl n and the Al : XCl n molar ratio are varied, and the yield of AlCl is monitored using absorption spectroscopy in a cryogenic gas. For KCl, the production of Al and K atoms was also monitored. We model the AlCl production in the limits of nonequilibrium recombination dominated by first-encounter events. The non-equilibrium model is in agreement with the data and also reproduces the observed trend with different XCl n precursors. We find that AlCl production is limited by the solid-state densities of Al and Cl atoms and the recondensation of Al atoms in the ablation plume. We suggest future directions for optimizing the production of cold AlCl molecules using laser ablation. 
    more » « less
  5. Thermal transport across solid interfaces is of great importance for applications like power electronics. In this work, we perform non-equilibrium molecular dynamics simulations to study the effect of light atoms on the thermal transport across SiC/GaN interfaces, where light atoms refer to substitutional or interstitial defect atoms lighter than those in the pristine lattice. Various light atom doping features, such as the light atom concentration, mass of the light atom, and skin depth of the doped region, have been investigated. It is found that substituting Ga atoms in the GaN lattice with lighter atoms ( e.g. boron atoms) with 50% concentration near the interface can increase the thermal boundary conductance (TBC) by up to 50%. If light atoms are introduced interstitially, a similar increase in TBC is observed. Spectral analysis of interfacial heat transfer reveals that the enhanced TBC can be attributed to the stronger coupling of mid- and high-frequency phonons after introducing light atoms. We have also further included quantum correction, which reduces the amount of enhancement, but it still exists. These results may provide a route to improve TBC across solid interfaces as light atoms can be introduced during material growth. 
    more » « less