The synthesis of (thiolfan*)Zr(NEt 2 ) 2 (thiolfan* = 1,1′-bis(2,4-di- tert -butyl-6-thiophenoxy)ferrocene) and its catalytic activity for intramolecular hydroamination are reported. In situ oxidation and reduction of the metal complex results in reactivity towards different substrates. The reduced form of (thiolfan*)Zr(NEt 2 ) 2 catalyzes hydroamination reactions of primary aminoalkenes, whereas the oxidized form catalyzes hydroamination reactions of secondary aminoalkenes.
more »
« less
Computational mapping of redox-switchable metal complexes based on ferrocene derivatives
DFT calculations were used to capture the properties of redox-switchable metal complexes relevant to the ring-opening polymerisation of cyclic esters by varying the metals, donors, linkers, and substituents in both accessible ferrocene oxidation states. A map of this chemical space highlights that modifying the ligand architecture and the metal has a larger impact on structural changes than changing the oxidation state of the ferrocene backbone.
more »
« less
- Award ID(s):
- 1809116
- PAR ID:
- 10101107
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 55
- Issue:
- 49
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 7021 to 7024
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Energy-relevant small molecule activations and related processes are often multi-electron in nature. Ferrocene is iconic for its well-behaved one-electron chemistry, and it is often used to impart redox activity to self-assembled architectures. When multiple ferrocenes are present as pendant groups in a single structure, they often behave as isolated sites with no separation of their redox events. Herein, we study a suite of molecules culminating in a self-assembled palladium(II) truncated tetrahedron (TT) with six pendant ferrocene moieties using the iron(III/II) couple to inform about the electronic structure and, in some cases, subsequent reactivity. Notably, although known ferrocene-containing metallacycles and cages show simple reversible redox chemistry, this TT undergoes a complex multi-step electrochemical mechanism upon oxidation. The electrochemical behavior was observed by voltammetric and spectroelectrochemical techniques and suggests that the initial Fc-centered oxidation is coupled to a subsequent change in species solubility and deposition of a film onto the working electrode, which is followed by a second separable electrochemical oxidation event. The complicated electrochemical behavior of this self-assembly reveals emergent properties resulting from organizing multiple ferrocene subunits into a discrete structure. We anticipate that such structures may provide the basis for multiple charge separation events to drive important processes related to energy capture, storage, and use, especially as the electronic communication between sites is further tuned.more » « less
-
Abstract Metal-metal contacts, though not yet widely realized, may provide exciting opportunities to serve as tunable and functional interfaces in single-molecule devices. One of the simplest components which might facilitate such binding interactions is the ferrocene group. Notably, direct bonds between the ferrocene iron center and metals such as Pd or Co have been demonstrated in molecular complexes comprising coordinating ligands attached to the cyclopentadienyl rings. Here, we demonstrate that ferrocene-based single-molecule devices with Fe-Au interfacial contact geometries form at room temperature in the absence of supporting coordinating ligands. Applying a photoredox reaction, we propose that ferrocene only functions effectively as a contact group when oxidized, binding to gold through a formal Fe3+center. This observation is further supported by a series of control measurements and density functional theory calculations. Our findings extend the scope of junction contact chemistries beyond those involving main group elements, lay the foundation for light switchable ferrocene-based single-molecule devices, and highlight new potential mechanistic function(s) of unsubstituted ferrocenium groups in synthetic processes.more » « less
-
Reaction of nickel and zinc triflates with the tridentate leucoverdazyl 1-isopropyl-3,5-di (2′-pyridyl)-6-oxo-2H-tetrazine (dipyvdH) and triethylamine resulted in the neutral coordination compounds M(dipyvd)2(M = Ni,Zn). In acetonitrile, both compounds undergo two one electron oxidation processes, Zn (dipyvd)2 at −0.28 V and −0.12 V and Ni(dipyvd)2 at −0.32 V and −0.15 V vs ferrocene/ferricenium. Oxidations are ligand based resulting in an intermediate mixed valence species and a cationic bis(verdazyl) compound respectively. Oxidation of the ligand changes a localized, antiaromatic, non-planar 8π electron anion to a planar, delocalized 7π electron radical. The change in ligand structure results in an increase in the octahedral ligand field splitting from 10,500 cm–1to ∼13,000 cm–1, suggesting an increase in the pi acceptor character of the ligand. In the mixed valence species, spectroscopic data suggests minimal interaction between ligands mediated by the metal center; i.e., these are class I-II systems in the Robin-Day classification.more » « less
-
null (Ed.)A dimeric yttrium phenoxide complex supported by a ferrocene Schiff base ligand, [(salfen)Y(OPh)] 2 (salfen = ( N,N ′-bis(2,4-di- tert -butylphenoxy)-1,1′-ferrocenediimine), was synthesized and characterized. According to electrochemical studies and 1 H NMR spectroscopy, [(salfen)Y(OPh)] 2 can be oxidized in a stepwise fashion to access three oxidation states. The catalytic activity of the three states toward the ring opening polymerization of cyclic esters and epoxides was investigated. The activity toward cyclic esters decreases upon oxidation while the opposite trend was observed in epoxide polymerization. Block copolymer syntheses using a redox switch were also performed.more » « less
An official website of the United States government

