The backbone of diketopyrrolopyrrole‐thiophene‐vinylene‐thiophene‐based polymer semiconductors (PSCs) is modified with pyridine (Py) or bipyridine ligands to complex Fe(II) metal centers, allowing the metal–ligand complexes to act as mechanophores and dynamically crosslink the polymer chains. Mono‐ and bi‐dentate ligands are observed to exhibit different degrees of bond strengths, which subsequently affect the mechanical properties of these Wolf‐type‐II metallopolymers. The counter ion also plays a crucial role, as it is observed that Py‐Fe mechanophores with non‐coordinating BPh4–counter ions (Py‐FeB) exhibit better thin film ductility with lower elastic modulus, as compared to the coordinating chloro ligands (Py‐FeC). Interestingly, besides mechanical robustness, the electrical charge carrier mobility can also be enhanced concurrently when incorporating Py‐FeB mechanophores in PSCs. This is a unique observation among stretchable PSCs, especially that most reports to date describe a decreased mobility when the stretchability is improved. Next, it is determined that improvements to both mobility and stretchability are correlated to the solid‐state molecular ordering and dynamics of coordination bonds under strain, as elucidated via techniques of grazing‐incidence X‐ray diffraction and X‐ray absorption spectroscopy techniques, respectively. This study provides a viable approach to enhance both the mechanical and the electronic performance of polymer‐based soft devices.
This content will become publicly available on December 1, 2025
Metal-metal contacts, though not yet widely realized, may provide exciting opportunities to serve as tunable and functional interfaces in single-molecule devices. One of the simplest components which might facilitate such binding interactions is the ferrocene group. Notably, direct bonds between the ferrocene iron center and metals such as Pd or Co have been demonstrated in molecular complexes comprising coordinating ligands attached to the cyclopentadienyl rings. Here, we demonstrate that ferrocene-based single-molecule devices with Fe-Au interfacial contact geometries form at room temperature in the absence of supporting coordinating ligands. Applying a photoredox reaction, we propose that ferrocene only functions effectively as a contact group when oxidized, binding to gold through a formal Fe3+center. This observation is further supported by a series of control measurements and density functional theory calculations. Our findings extend the scope of junction contact chemistries beyond those involving main group elements, lay the foundation for light switchable ferrocene-based single-molecule devices, and highlight new potential mechanistic function(s) of unsubstituted ferrocenium groups in synthetic processes.
more » « less- Award ID(s):
- 2241180
- NSF-PAR ID:
- 10512806
- Publisher / Repository:
- Nature Communications
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Computational screening of chemically active metal center in coordinated dipyridyl tetrazine network
Abstract Creation, stabilization, characterization, and control of single transition metal (TM) atoms may lead to significant advancement of the next-generation catalyst. Metal organic network (MON) in which single TM atoms are coordinated and separated by organic ligands is a promising class of material that may serve as a single atom catalyst. Our density functional theory-based calculations of MONs in which dipyridyl tetrazine (DPTZ) ligands coordinate with a TM atom to form linear chains leads to two types of geometries of the chains. Those with V, Cr, Mo, Fe, Co, Pt, or Pd atoms at the coordination center are planar while those with Au, Ag, Cu, or Ni are non-planar. The formation energies of the chains are high (∼2.0–7.9 eV), suggesting that these MON can be stabilized. Moreover, the calculated adsorption energies of CO and O2on the metal atom at center of the chains with the planar configuration lie in the range 1.0–3.0 eV for V, Cr, Mo, Fe, and Co at the coordination center, paving the way for future studies of CO oxidation on TM-DPTZ chains with the above five atoms at the coordination center.
-
Abstract With the aim of constructing hydrogen‐bonding networks in synthetic complexes, two new ligands derived from
cis,cis ‐1,3,5‐triaminocyclohexane (TACH) have been prepared that feature pendant pyrrole or indole rings as outer‐sphere H‐bond donors. The TACH framework offers a facial arrangement of threeN ‐donors, thereby mimicking common coordination motifs in the active sites of nonheme Fe and Cu enzymes. X‐ray structural characterization of a series of CuI‐X complexes (X=F, Cl, Br, NCS) revealed that these neutral ligands (H3LR, R=pyrrole or indole) coordinate in the intended facialN 3manner, yielding four‐coordinate complexes with idealizedC 3symmetry. The N−H units of the outer‐sphere heterocycles form a hydrogen‐bonding cavity around the axial (pseudo)halide ligand, as verified by crystallographic, spectroscopic, and computational analyses. Treatment of H3Lpyrroleand H3Lindolewith divalent transition metal chlorides (MIICl2, M=Fe, Cu, Zn) causes one heterocycle to deprotonate and coordinate to the M(II) center, giving rise to tetradentate ligands with two remaining outer‐sphere H‐bond donors. Further ligand deprotonation is observed upon reaction with Ni(II) and Cu(II) salts with weakly coordinating counteranions. The reported complexes highlight the versatility of TACH‐based ligands with pendant H‐bond donors, as the resulting scaffolds can support multiple protonation states, coordination geometries, and H‐bonding interactions. -
Abstract We present a ligand platform featuring appended ditopic Lewis acids to facilitate capture/activation of diatomic substrates. We show that incorporation of two 9‐borabicyclo[3.3.1]nonane (9‐BBN) units on a single carbon tethered to a pyridine pyrazole scaffold maintains a set of unquenched nitrogen donors available to coordinate FeII, ZnII, and NiII. Using hydride ion affinity and competition experiments, we establish an additive effect for ditopic secondary sphere boranes, compared to the monotopic analogue. These effects are exploited to achieve high selectivity for binding NO2−in the presence of competitive anions such as F−and NO3−. Finally, we demonstrate hydrazine capture within the second‐sphere of metal complexes, followed by unique activation pathways to generate hydrazido and diazene ligands on Zn and Fe, respectively.
-
Abstract We present a ligand platform featuring appended ditopic Lewis acids to facilitate capture/activation of diatomic substrates. We show that incorporation of two 9‐borabicyclo[3.3.1]nonane (9‐BBN) units on a single carbon tethered to a pyridine pyrazole scaffold maintains a set of unquenched nitrogen donors available to coordinate FeII, ZnII, and NiII. Using hydride ion affinity and competition experiments, we establish an additive effect for ditopic secondary sphere boranes, compared to the monotopic analogue. These effects are exploited to achieve high selectivity for binding NO2−in the presence of competitive anions such as F−and NO3−. Finally, we demonstrate hydrazine capture within the second‐sphere of metal complexes, followed by unique activation pathways to generate hydrazido and diazene ligands on Zn and Fe, respectively.