skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Probing the effect of interface on vortex pinning efficiency of one-dimensional BaZrO 3 and BaHfO 3 artificial pinning centers in YBa 2 Cu 3 O 7-x thin films
Award ID(s):
1508494
PAR ID:
10101138
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Applied Physics Letters
Volume:
113
Issue:
21
ISSN:
0003-6951
Page Range / eLocation ID:
212602
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The switching characteristics of ferroelectrics and multiferroics are influenced by the interaction of topological defects with domain walls. We report on the pinning of polarization due to antiphase boundaries in thin films of the multiferroic hexagonal YbFeO3. We have directly resolved the atomic structure of a sharp antiphase boundary (APB) in YbFeO3thin films using a combination of aberration-corrected scanning transmission electron microscopy (STEM) and total energy calculations based on density-functional theory (DFT). We find the presence of a layer of FeO6octahedra at the APB that bridges the adjacent domains. STEM imaging shows a reversal in the direction of polarization on moving across the APB, which DFT calculations confirm is structural in nature as the polarization reversal reduces the distortion of the FeO6octahedral layer at the APB. Such APBs in hexagonal perovskites are expected to serve as domain-wall pinning sites and hinder ferroelectric switching of the domains. 
    more » « less
  2. Abstract C-axis aligned BaZrO3(BZO) nanorods formed via strain-mediated self-assembly in BZO-doped YaBa2Cu3O7-x(BZO/YBCO) nanocomposite films can provide strong pinning to the quantized magnetic vortices. While the strain initiated from the BZO/YBCO lattice mismatch plays a critical role in nucleation and evolution of the BZO nanorods, it also leads to a highly defective BZO/YBCO interface and hence reduced pinning efficiency of BZO nanorods. This work reports a recent study in probing the effect of BZO/YBCO interface on the pinning efficiency of the BZO nanorods as the interface is repaired dynamically during the BZO nanorod growth using Ca doping. Within the BZO doping range of 2-8 vol.%, significantly enhanced pinning efficiency of the BZO nanorods have been observed. A peak enhancement up to five-fold of critical current density at 9.0 T and 65-77 K has been obtained in the 6 vol.% BZO/YBCO nanocomposites after the interface repair. This result not only illustrates the critical importance of the BZO/YBCO interface in the pinning efficiency, but also provides a facile scheme to achieve such an interface to restore the pristine pinning efficiency of the BZO nanorods. 
    more » « less