skip to main content


Title: Efficient Modeling of Electron Transport with Plane Waves
We present a method to simulate ballistic quantum transport in one-dimensional nanostructures, such as extremely scaled transistors, with a channel of nanowires or nanoribbons. In contrast to most popular approaches, we develop our method employing an accurate plane-wave basis at the atomic scale while retaining the numerical efficiency of a localized (tight-binding) basis at larger scales. At the core of our method is a finite-element expansion, where the finite element basis is enriched by a set of Bloch waves at high-symmetry points in the Brillouin zone of the crystal. We demonstrate the accuracy and efficiency of our method with the self-consistent simulation of ballistic transport in graphene nanoribbon FETs.  more » « less
Award ID(s):
1710066
NSF-PAR ID:
10101170
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Efficient Modeling of Electron Transport with Plane Waves
Page Range / eLocation ID:
71 to 74
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    In this paper, we propose a general concept for constructing multiscale basis functions within Generalized Multiscale Finite Element Method, which uses oversampling and stable decomposition. The oversampling refers to using larger regions in constructing multiscale basis functions and stable decomposition allows estimating the local errors. The analysis of multiscale methods involves decomposing the error by coarse regions, where each error contribution is estimated. In this estimate, we often use oversampling techniques to achieve a fast convergence. We demonstrate our concepts in the mixed, the Interior Penalty Discontinuous Galerkin, and Hybridized Discontinuous Galerkin discretizations. One of the important features of the proposed basis functions is that they can be used in online Generalized Multiscale Finite Element Method, where one constructs multiscale basis functions using residuals. In these problems, it is important to achieve a fast convergence, which can be guaranteed if we have a stable decomposition. In our numerical results, we present examples for both offline and online multiscale basis functions. Our numerical results show that one can achieve a fast convergence when using online basis functions. Moreover, we observe that coupling using Hybridized Discontinuous Galerkin provides a better accuracy compared with Interior Penalty Discontinuous Galerkin, which is due to using multiscale glueing functions.

     
    more » « less
  2. Abstract We combine theoretical results from polytope domain meshing, generalized barycentric coordinates, and finite element exterior calculus to construct scalar- and vector-valued basis functions for conforming finite element methods on generic convex polytope meshes in dimensions 2 and 3. Our construction recovers well-known bases for the lowest order Nédélec, Raviart–Thomas, and Brezzi–Douglas–Marini elements on simplicial meshes and generalizes the notion of Whitney forms to non-simplicial convex polygons and polyhedra. We show that our basis functions lie in the correct function space with regards to global continuity and that they reproduce the requisite polynomial differential forms described by finite element exterior calculus. We present a method to count the number of basis functions required to ensure these two key properties. 
    more » « less
  3. Interface problems have wide applications in modern scientific research. Obtaining accurate numerical solutions of multi-domain problems involving triple junction conditions remains a significant challenge. In this paper, we develop an efficient finite element method based on non-body-fitting meshes for solving multi-domain elliptic interface problems. We follow the idea of immersed finite element by modifying local basis functions to accommodate interface conditions. We enrich the local finite element space by adding new basis functions for handling non-homogeneous flux jump. The numerical scheme is symmetric and positive definite. Numerical experiments are provided to demonstrate the features of our method. 
    more » « less
  4. For a given PDE problem, three main factors affect the accuracy of FEM solutions: basis order, mesh resolution, and mesh element quality. The first two factors are easy to control, while controlling element shape quality is a challenge, with fundamental limitations on what can be achieved. We propose to use p-refinement (increasing element degree) to decouple the approximation error of the finite element method from the domain mesh quality for elliptic PDEs. Our technique produces an accurate solution even on meshes with badly shaped elements, with a slightly higher running time due to the higher cost of high-order elements. We demonstrate that it is able to automatically adapt the basis to badly shaped elements, ensuring an error consistent with high-quality meshing, without any per-mesh parameter tuning. Our construction reduces to traditional fixed-degree FEM methods on high-quality meshes with identical performance. Our construction decreases the burden on meshing algorithms, reducing the need for often expensive mesh optimization and automatically compensates for badly shaped elements, which are present due to boundary con- straints or limitations of current meshing methods. By tackling mesh gen- eration and finite element simulation jointly, we obtain a pipeline that is both more efficient and more robust than combinations of existing state of the art meshing and FEM algorithms. 
    more » « less
  5. The Finite Element Method (FEM) is widely used to solve discrete Partial Differential Equations (PDEs) in engineering and graphics applications. The popularity of FEM led to the development of a large family of variants, most of which require a tetrahedral or hexahedral mesh to construct the basis. While the theoretical properties of FEM basis (such as convergence rate, stability, etc.) are well understood under specific assumptions on the mesh quality, their practical performance, influenced both by the choice of the basis construction and quality of mesh generation, have not been systematically documented for large collections of automatically meshed 3D geometries. We introduce a set of benchmark problems involving most commonly solved elliptic PDEs, starting from simple cases with an analytical solution, moving to commonly used test problem setups, and using manufactured solutions for thousands of real-world, automatically meshed geometries. For all these cases, we use state-of-the-art meshing tools to create both tetrahedral and hexahedral meshes, and compare the performance of different element types for common elliptic PDEs. The goal of this benchmark is to enable comparison of complete FEM pipelines, from mesh generation to algebraic solver, and exploration of relative impact of different factors on the overall system performance. As a specific application of our geometry and benchmark dataset, we explore the question of relative advantages of unstructured (triangular/ tetrahedral) and structured (quadrilateral/hexahedral) discretizations. We observe that for Lagrange-type elements, while linear tetrahedral elements perform poorly, quadratic tetrahedral elements perform equally well or outperform hexahedral elements for our set of problems and currently available mesh generation algorithms. This observation suggests that for common problems in structural analysis, thermal analysis, and low Reynolds number flows, high-quality results can be obtained with unstructured tetrahedral meshes, which can be created robustly and automatically. We release the description of the benchmark problems, meshes, and reference implementation of our testing infrastructure to enable statistically significant comparisons between different FE methods, which we hope will be helpful in the development of new meshing and FEA techniques. 
    more » « less