Ellis, K.; Ferrell, W.; Knapp, J.
(Ed.)
There is no doubt that there is an increase in the penetration of electrical energy into the operation of high-speed railway systems (HSR). This is even more pronounced with the increasing trends in smart electric multiple units (EMU). The operational speed serves as a metric for punctuality and safety, as well as a critical element to maintain the balance between energy supply and consumption. The speed-based regenerative energy from EMU’s braking mode could be utilized in the restoration of system operation in the aftermath of a failure. This paper optimizes the system resiliency with respect to the operational speed for the purpose of restoration by minimizing the total cost of implementing recovery measures. By simultaneously valuating the dual-impact of any given fault on the speed deterioration level from the railway operation systems (ROS) side and the power supply and demand unbalance level from the railway power systems (RPS) side, this process develops an adaptive two-dimension risk assessment scheme for prioritizing the handling of different operational zones that are cascaded in the system. With the aid of an integrated speed-based resilience cost model, we determine the optimal resilience time, speed modification plan, and energy allocation strategy. The outcome from implementing this routine in a real-world HSR offers a pioneering decision-making strategy and perspective on optimizing the resilience of an integrated system.
more »
« less
An official website of the United States government

