skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal Speed-based Cost of Resilience in Electrified High-speed Railway Systems
There is no doubt that there is an increase in the penetration of electrical energy into the operation of high-speed railway systems (HSR). This is even more pronounced with the increasing trends in smart electric multiple units (EMU). The operational speed serves as a metric for punctuality and safety, as well as a critical element to maintain the balance between energy supply and consumption. The speed-based regenerative energy from EMU’s braking mode could be utilized in the restoration of system operation in the aftermath of a failure. This paper optimizes the system resiliency with respect to the operational speed for the purpose of restoration by minimizing the total cost of implementing recovery measures. By simultaneously valuating the dual-impact of any given fault on the speed deterioration level from the railway operation systems (ROS) side and the power supply and demand unbalance level from the railway power systems (RPS) side, this process develops an adaptive two-dimension risk assessment scheme for prioritizing the handling of different operational zones that are cascaded in the system. With the aid of an integrated speed-based resilience cost model, we determine the optimal resilience time, speed modification plan, and energy allocation strategy. The outcome from implementing this routine in a real-world HSR offers a pioneering decision-making strategy and perspective on optimizing the resilience of an integrated system.  more » « less
Award ID(s):
1847077
PAR ID:
10398910
Author(s) / Creator(s):
;
Editor(s):
Ellis, K.; Ferrell, W.; Knapp, J.
Date Published:
Journal Name:
Proceedings of the IISE Annual Conference & Expo 2022 K. Ellis, W. Ferrell, J. Knapp, eds.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The electrical power system is the backbone of our nations critical infrastructure. It has been designed to withstand single component failures based on a set of reliability metrics which have proven acceptable during normal operating conditions. However, in recent years there has been an increasing frequency of extreme weather events. Many have resulted in widespread long-term power outages, proving reliability metrics do not provide adequate energy security. As a result, researchers have focused their efforts resilience metrics to ensure efficient operation of power systems during extreme events. A resilient system has the ability to resist, adapt, and recover from disruptions. Therefore, resilience has demonstrated itself as a promising concept for currently faced challenges in power distribution systems. In this work, we propose an operational resilience metric for modern power distribution systems. The metric is based on the aggregation of system assets adaptive capacity in real and reactive power. This metric gives information to the magnitude and duration of a disturbance the system can withstand. We demonstrate resilience metric in a case study under normal operation and during a power contingency on a microgrid. In the future, this information can be used by operators to make more informed decisions based on system resilience in an effort to prevent power outages. 
    more » « less
  2. Angelakis, Andreas (Ed.)
    Traditional centralized water systems are facing sustainability challenges due to climate and socioeconomic changes, extreme weather events, and aging infrastructure and their uncertainties. The energy sector has addressed similar challenges using the microgrid approach, which involves decentralized energy sources and their supply, improving system resilience and sustainable energy supply. This study investigated the resilience effects of water microgrids, which feature operational interactions between centralized and local systems for sustainable water supply. A lab-scale water distribution model was tested to demonstrate centralized, decentralized, and microgrid water systems under the disruption scenarios of pump shutdown, pump rate manipulation, and pipe leaks/bursts. The water microgrids integrate centralized and local systems’ operations, while the decentralized system operates independently. Then, functionality-based resilience and its attributes were evaluated for each disruption scenario. The results reveal that, overall, the microgrid configuration, with increased water supply redundancy and flexible operational adjustment based on system conditions, showed higher resilience, robustness, and recovery rate and a lower loss rate across disruption scenarios. The resilience effect of water microgrids was more evident with longer and more severe disruptions. Considering global challenges in water security under climate and socioeconomic changes, the findings suggest insights into a hybrid water system as a strategy to enhance resilience and water use efficiency and provide adaptive operations for sustainable water supply. 
    more » « less
  3. It is well known that interdependence between electric power systems and other infrastructures can impact energy reliability and resilience, but it is less clear which particular interactions have the most impact. There is a need for methods that can rank the relative importance of these interdependencies. This paper describes a new tool for measuring resilience and ranking interactions. This tool, known as Computing Resilience of Infrastructure Simulation Platform (CRISP), samples from historical utility data to avoid many of the assumptions required for simulation-based approaches to resilience quantification. This paper applies CRISP to rank the relative importance of four types of interdependence (natural gas supply, communication systems, nuclear generation recovery, and a generic restoration delay) in two test cases: the IEEE 39-bus test case and a 6394-bus model of the New England/New York power grid. The results confirm industry studies suggesting that a loss of the natural gas system is the most severe specific interdependence faced by this region. 
    more » « less
  4. Abstract The ability to withstand and recover from disruptions is essential for seaport energy systems, and in light of the growing push for decarbonization, incorporating clean energy sources has become increasingly imperative to ensure resilience. This paper proposes a resilience enhancement planning strategy for a seaport multi‐energy system that integrates various energy modalities and sources, including heating, cooling, hydrogen, solar, and wind power. The planning strategy aims to ensure the reliable operation of the system during contingency events, such as power outages, equipment failures, or extreme weather incidents. The proposed optimization model is designed as a mixed‐integer nonlinear programming formulation, in which McCormick inequalities and other linearization techniques are utilized to tackle the model nonlinearities. The model allocates fuel cell electric trucks (FCETs), renewable energy sources, hydrogen refueling stations, and remote control switches such that the system resilience is enhanced while incorporating natural‐gas‐powered combined cooling, heating, and power system to minimize the operation and unserved demand costs. The model considers various factors such as the availability of renewable energy sources, the demand for heating, cooling, electricity, and hydrogen, the operation of remote control switches to help system reconfiguration, the travel behaviour of FCETs, and the power output of FCETs via vehicle‐to‐grid interface. The numerical results demonstrate that the proposed strategy can significantly improve the resilience of the seaport multi‐energy system and reduce the risk of service disruptions during contingency scenarios. 
    more » « less
  5. This paper presents a survey of the literature on the strategies to enhance the resilience of power systems while shedding lights on the research gaps. Using a deductive methodology on the literature covering the resilience of power systems, we reviewed more than two hundred peer-reviewed articles spanning the 2010–2019 decade. We find that there is vacuum on the level of integration that considers the interdependence of local or decentralized decision making in an adaptive power system. This gap is widened by the absence of policies to enhance resilience in power networks. While there is significant coverage and convergence of research on algorithms for solving the multi-objective problem in optimization routines, there are still uncharted territories on how to incorporate system degradation while designing these self-restoration systems. We posit that a shift to a smarter, cleaner and more resilient power network requires sustained investments rather than disaster-induced responses. 
    more » « less