skip to main content


Title: Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors
A major fraction of atmospheric aerosol particles, which affect both air quality and climate, form from gaseous precursors in the atmosphere. Highly oxygenated organic molecules (HOMs), formed by oxidation of biogenic volatile organic compounds, are known to participate in particle formation and growth. However, it is not well understood how they interact with atmospheric pollutants, such as nitrogen oxides (NO x ) and sulfur oxides (SO x ) from fossil fuel combustion, as well as ammonia (NH 3 ) from livestock and fertilizers. Here, we show how NO x suppresses particle formation, while HOMs, sulfuric acid, and NH 3 have a synergistic enhancing effect on particle formation. We postulate a novel mechanism, involving HOMs, sulfuric acid, and ammonia, which is able to closely reproduce observations of particle formation and growth in daytime boreal forest and similar environments. The findings elucidate the complex interactions between biogenic and anthropogenic vapors in the atmospheric aerosol system.  more » « less
Award ID(s):
1649147
NSF-PAR ID:
10101310
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Science Advances
Volume:
4
Issue:
12
ISSN:
2375-2548
Page Range / eLocation ID:
eaau5363
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Highly oxygenated organic molecules (HOMs) contributesubstantially to the formation and growth of atmospheric aerosol particles,which affect air quality, human health and Earth's climate. HOMs are formedby rapid, gas-phase autoxidation of volatile organic compounds (VOCs) suchas α-pinene, the most abundant monoterpene in the atmosphere. Due totheir abundance and low volatility, HOMs can play an important role innew-particle formation (NPF) and the early growth of atmospheric aerosols,even without any further assistance of other low-volatility compounds suchas sulfuric acid. Both the autoxidation reaction forming HOMs and theirNPF rates are expected to be strongly dependent ontemperature. However, experimental data on both effects are limited.Dedicated experiments were performed at the CLOUD (Cosmics Leaving OUtdoorDroplets) chamber at CERN to address this question. In this study, we showthat a decrease in temperature (from +25 to −50 ∘C) results ina reduced HOM yield and reduced oxidation state of the products, whereas theNPF rates (J1.7 nm) increase substantially.Measurements with two different chemical ionization mass spectrometers(using nitrate and protonated water as reagent ion, respectively) providethe molecular composition of the gaseous oxidation products, and atwo-dimensional volatility basis set (2D VBS) model provides their volatilitydistribution. The HOM yield decreases with temperature from 6.2 % at 25 ∘C to 0.7 % at −50 ∘C. However, there is a strongreduction of the saturation vapor pressure of each oxidation state as thetemperature is reduced. Overall, the reduction in volatility withtemperature leads to an increase in the nucleation rates by up to 3orders of magnitude at −50 ∘C compared with 25 ∘C. Inaddition, the enhancement of the nucleation rates by ions decreases withdecreasing temperature, since the neutral molecular clusters have increasedstability against evaporation. The resulting data quantify how the interplaybetween the temperature-dependent oxidation pathways and the associatedvapor pressures affect biogenic NPF at the molecularlevel. Our measurements, therefore, improve our understanding of purebiogenic NPF for a wide range of tropospherictemperatures and precursor concentrations. 
    more » « less
  2. Abstract. The exchange of trace gases between the biosphere and the atmosphere is an important process that controls both chemical and physical properties of the atmosphere with implications for air quality and climate change. The terrestrial biosphere is a major source of reactive biogenic volatile organic compounds (BVOCs) that govern atmospheric concentrations of the hydroxy radical (OH) and ozone (O3) and control the formation andgrowth of secondary organic aerosol (SOA). Common simulations of BVOCsurface–atmosphere exchange in chemical transport models use parameterizations derived from the growing season and do not considerpotential changes in emissions during seasonal transitions. Here, we useobservations of BVOCs over a mixed temperate forest in northern Wisconsinduring broadleaf senescence to better understand the effects of the seasonal changes in canopy conditions (e.g., temperature, sunlight, leaf area, and leaf stage) on net BVOC exchange. The BVOCs investigated here include the terpenoids isoprene (C5H8), monoterpenes (MTs; C10H16), a monoterpene oxide (C10H16O), and sesquiterpenes (SQTs; C15H24), as well as a subset of other monoterpene oxides and dimethyl sulfide (DMS). During this period, MTs were primarily composed of α-pinene, β-pinene, and camphene, with α-pinene and camphene dominant during the first half of September and β-pinene thereafter. We observed enhanced MT and monoterpene oxide emissions following the onset of leaf senescence and suggest that senescence has the potential to be a significant control on late-season MT emissions in this ecosystem. We show that common parameterizations of BVOC emissions cannot reproduce the fluxes of MT, C10H16O, and SQT during the onset and continuation of senescence but can correctly simulate isoprene flux. We also describe the impact of the MT emission enhancement on the potential to form highly oxygenated organic molecules (HOMs). The calculated production rates of HOMs and H2SO4, constrained by terpene and DMS concentrations, suggest that biogenic aerosol formation and growth in this region should be dominated by secondary organics rather than sulfate. Further, we show that models using parameterized MT emissions likely underestimate HOM production, and thus aerosol growth and formation, during early autumn in this region. Further measurements of forest–atmosphere BVOC exchange during seasonal transitions as well as measurements of DMS in temperate regions are needed to effectively predict the effects of canopy changes on reactive carbon cycling and aerosol production. 
    more » « less
  3. The ability of atmospheric aerosols to impact climate through water uptake and cloud formation is fundamentally determined by the size, composition, and phase (liquid, semisolid, or solid) of individual particles. Particle phase is dependent on atmospheric conditions (relative humidity and temperature) and chemical composition and, importantly, solid particles can inhibit the uptake of water and other trace gases, even under humid conditions. Particles composed primarily of ammonium sulfate are presumed to be liquid at the relative humidities (67 to 98%) and temperatures (−2 to 4 °C) of the summertime Arctic. Under these atmospheric conditions, we report the observation of solid organic-coated ammonium sulfate particles representing 30% of particles, by number, in a key size range (<0.2 µm) for cloud activation within marine air masses from the Arctic Ocean at Utqiaġvik, AK. The composition and size of the observed particles are consistent with recent Arctic modeling and observational results showing new particle formation and growth from dimethylsulfide oxidation to form sulfuric acid, reaction with ammonia, and condensation of marine biogenic sulfate and highly oxygenated organic molecules. Aqueous sulfate particles typically undergo efflorescence and solidify at relative humidities of less than 34%. Therefore, the observed solid phase is hypothesized to occur from contact efflorescence during collision of a newly formed Aitken mode sulfate particle with an organic-coated ammonium sulfate particle. With declining sea ice in the warming Arctic, this particle source is expected to increase with increasing open water and marine biogenic emissions. 
    more » « less
  4. Abstract. Biogenic organic precursors play an important role inatmospheric new particle formation (NPF). One of the major precursor speciesis α-pinene, which upon oxidation can form a suite of productscovering a wide range of volatilities. Highly oxygenated organic molecules(HOMs) comprise a fraction of the oxidation products formed. While it isknown that HOMs contribute to secondary organic aerosol (SOA) formation,including NPF, they have not been well studied in newly formed particles dueto their very low mass concentrations. Here we present gas- and particle-phase chemical composition data from experimental studies of α-pinene oxidation, including in the presence of isoprene, at temperatures(−50 and −30 ∘C) and relativehumidities (20 % and 60 %) relevant in the upper free troposphere. Themeasurements took place at the CERN Cosmics Leaving Outdoor Droplets (CLOUD)chamber. The particle chemical composition was analyzed by a thermaldesorption differential mobility analyzer (TD-DMA) coupled to a nitratechemical ionization–atmospheric pressure interface–time-of-flight(CI-APi-TOF) mass spectrometer. CI-APi-TOF was used for particle- and gas-phase measurements, applying the same ionization and detection scheme. Ourmeasurements revealed the presence of C8−10 monomers and C18−20dimers as the major compounds in the particles (diameter up to∼ 100 nm). Particularly, for the system with isoprene added,C5 (C5H10O5−7) and C15 compounds(C15H24O5−10) were detected. This observation is consistentwith the previously observed formation of such compounds in the gas phase. However, although the C5 and C15 compounds do not easily nucleate,our measurements indicate that they can still contribute to the particlegrowth at free tropospheric conditions. For the experiments reported here,most likely isoprene oxidation products enhance the growth of particleslarger than 15 nm. Additionally, we report on the nucleation rates measuredat 1.7 nm (J1.7 nm) and compared with previous studies, we found lowerJ1.7 nm values, very likely due to the higher α-pinene andozone mixing ratios used in the present study. 
    more » « less
  5. Abstract. While camphene is one of the dominant monoterpenesmeasured in biogenic and pyrogenic emission samples, oxidation of camphenehas not been well-studied in environmental chambers and very little is knownabout its potential to form secondary organic aerosol (SOA). The lack ofchamber-derived SOA data for camphene may lead to significant uncertaintiesin predictions of SOA from oxidation of monoterpenes using existingparameterizations when camphene is a significant contributor to totalmonoterpenes. Therefore, to advance the understanding of camphene oxidationand SOA formation and to improve representation of camphene in air qualitymodels, a series of experiments was performed in the University ofCalifornia Riverside environmental chamber to explore camphene SOA massyields and properties across a range of chemical conditions atatmospherically relevant OH concentrations. The experimental results werecompared with modeling simulations obtained using two chemically detailedbox models: Statewide Air Pollution Research Center (SAPRC) and Generatorfor Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A).SOA parameterizations were derived from the chamber data using both thetwo-product and volatility basis set (VBS) approaches. Experiments performedwith added nitrogen oxides (NOx) resulted in higher SOA mass yields (upto 64 %) than experiments performed without added NOx (up to 28 %).In addition, camphene SOA mass yields increased with SOA mass (Mo) atlower mass loadings, but a threshold was reached at higher mass loadings inwhich the SOA mass yields no longer increased with Mo. SAPRC modelingof the chamber studies suggested that the higher SOA mass yields at higherinitial NOx levels were primarily due to higher production of peroxyradicals (RO2) and the generation of highly oxygenated organicmolecules (HOMs) formed through unimolecular RO2 reactions. SAPRCpredicted that in the presence of NOx, camphene RO2 reacts with NOand the resultant RO2 undergoes hydrogen (H)-shift isomerizationreactions; as has been documented previously, such reactions rapidly addoxygen and lead to products with very low volatility (i.e., HOMs). The endproducts formed in the presence of NOx have significantly lowervolatilities, and higher O : C ratios, than those formed by initial campheneRO2 reacting with hydroperoxyl radicals (HO2) or other RO2.Further analysis reveals the existence of an extreme NOx regime, whereinthe SOA mass yield can be suppressed again due to high NO / HO2 ratios.Moreover, particle densities were found to decrease from 1.47 to 1.30 g cm−3 as [HC]0 / [NOx]0 increased and O : C decreased. Theobserved differences in SOA mass yields were largely explained by thegas-phase RO2 chemistry and the competition between RO2+HO2, RO2+ NO, RO2+ RO2, and RO2 autoxidationreactions. 
    more » « less