JCMT POL-2 and ALMA Polarimetric Observations of 6000–100 au Scales in the Protostar B335: Linking Magnetic Field and Gas Kinematics in Observations and MHD Simulations
More Like this
-
Abstract This article critically reviews research on tornado theory and observations over the last decade. From the theoretical standpoint, the major advances have come through improved numerical-simulation models of supercell convective storms, which contain the tornado’s parent circulation. These simulations are carried out on a large domain (to capture the supercell’s circulation system), but with high grid resolution and improved representations of sub-grid physics (to capture the tornado). These simulations offer new insights into how and why tornadoes form in some supercells, but not others. Observational advances have come through technological improvements of mobile Doppler radars capable of rapid scanning and dual-polarization measurements, which offer a much more accurate view of tornado formation, tornado structure, and the tornado’s place within its parent supercell.more » « less
-
Abstract This study examines thermodynamic–convection coupling in observations and reanalyses, and attempts to establish process-level benchmarks needed to guide model development. Thermodynamic profiles obtained from the NOAA Integrated Global Radiosonde Archive, COSMIC-1 GPS radio occultations, and several reanalyses are examined alongside Tropical Rainfall Measuring Mission precipitation estimates. Cyclical increases and decreases in a bulk measure of lower-tropospheric convective instability are shown to be coupled to the cyclical amplification and decay of convection. This cyclical flow emerges from conditional-mean analysis in a thermodynamic space composed of two components: a measure of “undiluted” instability, which neglects lower-free-tropospheric (LFT) entrainment, and a measure of the reduction of instability by LFT entrainment. The observational and reanalysis products examined share the following qualitatively robust characterization of these convective cycles: increases in undiluted instability tend to occur when the LFT is less saturated, are followed by increases in LFT saturation and precipitation rate, which are then followed by decreases in undiluted instability. Shallow, convective, and stratiform precipitation are coupled to these cycles in a manner consistent with meteorological expectations. In situ and satellite observations differ systematically from reanalyses in their depictions of lower-tropospheric temperature and moisture variations throughout these convective cycles. When using reanalysis thermodynamic fields, these systematic differences cause variations in lower-free-tropospheric saturation deficit to appear less influential in determining the strength of convection than is suggested by observations. Disagreements among reanalyses, as well as between reanalyses and observations, pose significant challenges to process-level assessments of thermodynamic–convection coupling.more » « less
-
Using direct high-speed imaging, we study the transition between different chip formation modes, and the underlying mechanics, in machining of ductile metals. Three distinct chip formation modes — continuous chip, shear-localized chip, and fragmented chip — are effected in a same material system by varying the cutting speed. It is shown using direct observations that shear-localized chip formation is characterized by shear band nucleation at the tool tip and its propagation towards the free surface, which is then followed by plastic slip along the band without fracture. The transition from shear-localized chip to fragmented chip with increasing cutting speed is triggered by crack initiation at the free surface and propagation towards the tool tip. The extent to which crack travels towards the tool determines whether the chip is partially fragmented or fully fragmented (discontinuous). It is shown that shear localization precedes fracture and controls the crack path in fragmented chip formation. Dynamic strain and strain-rate fields underlying the each chip formation mode are quantified through image correlation analysis of high-speed images. Implications for using machining as an experimental tool for fundamental studies of localization and shear fracture in ductile metals are also discussed.more » « less
-
null (Ed.)Abstract The plate interface undergoes two transitions between seismogenic depths and subarc depths. A brittle-ductile transition at 20–50 km depth is followed by a transition to full viscous coupling to the overlying mantle wedge at ∼80 km depth. We review evidence for both transitions, focusing on heat-flow and seismic-attenuation constraints on the deeper transition. The intervening ductile shear zone likely weakens considerably as temperature increases, such that its rheology exerts a stronger control on subduction-zone thermal structure than does frictional shear heating. We evaluate its role through analytic approximations and two-dimensional finite-element models for both idealized subduction geometries and those resembling real subduction zones. We show that a temperature-buffering process exists in the shear zone that results in temperatures being tightly controlled by the rheological strength of that shear zone’s material for a wide range of shear-heating behaviors of the shallower brittle region. Higher temperatures result in weaker shear zones and hence less heat generation, so temperatures stop increasing and shear zones stop weakening. The net result for many rheologies are temperatures limited to ≤350–420 °C along the plate interface below the cold forearc of most subduction zones until the hot coupled mantle is approached. Very young incoming plates are the exception. This rheological buffering desensitizes subduction-zone thermal structure to many parameters and may help explain the global constancy of the 80 km coupling limit. We recalculate water fluxes to the forearc wedge and deep mantle and find that shear heating has little effect on global water circulation.more » « less