skip to main content


Title: Community lexical access for an endangered polysynthetic language: An electronic dictionary for St. Lawrence Island Yupik
In this paper, we introduce a morphologically-aware electronic dictionary for St. Lawrence Island Yupik, an endangered language of the Bering Strait region. Implemented using HTML, Javascript, and CSS, the dictionary is set in an uncluttered interface and permits users to search in Yupik or in English for Yupik root words and Yupik derivational suffixes. For each matching result, our electronic dictionary presents the user with the corresponding entry from the Badten et al. (2008) Yupik-English paper dictionary. Because Yupik is a polysynthetic language, handling of multi- morphemic word forms is critical. If a user searches for an inflected Yupik word form, we perform a morphological analysis and return entries for the root word and for any derivational suffixes present in the word. This electronic dictionary should serve not only as a valuable resource for all students and speakers of Yupik, but also for field linguists working towards documentation and conservation of the language.  more » « less
Award ID(s):
1760977
NSF-PAR ID:
10101587
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of NAACL-HLT 2019: Demonstrations
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we introduce a morphologically-aware electronic dictionary for St. Lawrence Island Yupik, an endangered language of the Bering Strait region. Implemented using HTML, Javascript, and CSS, the dictionary is set in an uncluttered interface and permits users to search in Yupik or in English for Yupik root words and Yupik derivational suffixes. For each matching result, our electronic dictionary presents the user with the corresponding entry from the Badten (2008) Yupik-English paper dictionary. Because Yupik is a polysynthetic language, handling of multimorphemic word forms is critical. If a user searches for an inflected Yupik word form, we perform a morphological analysis and return entries for the root word and for any derivational suffixes present in the word. This electronic dictionary should serve not only as a valuable resource for all students and speakers of Yupik, but also for field linguists working towards documentation and conservation of the language. 
    more » « less
  2. null (Ed.)
    Many techniques in modern computational linguistics and natural language processing (NLP) make the assumption that approaches that work well on English and other widely used European (and sometimes Asian) languages are “language agnostic” – that is that they will also work across the typologically diverse languages of the world. In high-resource languages, especially those that are analytic rather than synthetic, a common approach is to treat morphologically-distinct variants of a common root (such as dog and dogs) as completely independent word types. Doing so relies on two main assumptions: that there exist a limited number of morphological inflections for any given root, and that most or all of those variants will appear in a large enough corpus (conditioned on assumptions about domain, etc.) so that the model can adequately learn statistics about each variant. Approaches like stemming, lemmatization, morphological analysis, subword segmentation, or other normalization techniques are frequently used when either of those assumptions are likely to be violated, particularly in the case of synthetic languages like Czech and Russian that have more inflectional morphology than English. Within the NLP literature, agglutinative languages like Finnish and Turkish are commonly held up as extreme examples of morphological complexity that challenge common modelling assumptions. Yet, when considering all of the world’s languages, Finnish and Turkish are closer to the average case in terms of synthesis. When we consider polysynthetic languages (those at the extreme of morphological complexity), even approaches like stemming, lemmatization, or subword modelling may not suffice. These languages have very high numbers of hapax legomena (words appearing only once in a corpus), underscoring the need for appropriate morphological handling of words, without which there is no hope for a model to capture enough statistical information about those words. Moreover, many of these languages have only very small text corpora, substantially magnifying these challenges. To this end, we examine the current state-of-the-art in language modelling, machine translation, and predictive text completion in the context of four polysynthetic languages: Guaraní, St. Lawrence Island Yupik, Central Alaskan Yup’ik, and Inuktitut. We have a particular focus on Inuit-Yupik, a highly challenging family of endangered polysynthetic languages that ranges geographically from Greenland through northern Canada and Alaska to far eastern Russia. The languages in this family are extraordinarily challenging from a computational perspective, with pervasive use of derivational morphemes in addition to rich sets of inflectional suffixes and phonological challenges at morpheme boundaries. Finally, we propose a novel framework for language modelling that combines knowledge representations from finite-state morphological analyzers with Tensor Product Representations (Smolensky, 1990) in order to enable successful neural language models capable of handling the full linguistic variety of typologically variant languages. 
    more » « less
  3. Many techniques in modern computational linguistics and natural language processing (NLP) make the assumption that approaches that work well on English and other widely used European (and sometimes Asian) languages are “language agnostic” – that is that they will also work across the typologically diverse languages of the world. In high-resource languages, especially those that are analytic rather than synthetic, a common approach is to treat morphologically-distinct variants of a common root (such as dog and dogs) as completely independent word types. Doing so relies on two main assumptions: that there exist a limited number of morphological inflections for any given root, and that most or all of those variants will appear in a large enough corpus (conditioned on assumptions about domain, etc.) so that the model can adequately learn statistics about each variant. Approaches like stemming, lemmatization, morphological analysis, subword segmentation, or other normalization techniques are frequently used when either of those assumptions are likely to be violated, particularly in the case of synthetic languages like Czech and Russian that have more inflectional morphology than English. Within the NLP literature, agglutinative languages like Finnish and Turkish are commonly held up as extreme examples of morphological complexity that challenge common modelling assumptions. Yet, when considering all of the world’s languages, Finnish and Turkish are closer to the average case in terms of synthesis. When we consider polysynthetic languages (those at the extreme of morphological complexity), even approaches like stemming, lemmatization, or subword modelling may not suffice. These languages have very high numbers of hapax legomena (words appearing only once in a corpus), underscoring the need for appropriate morphological handling of words, without which there is no hope for a model to capture enough statistical information about those words. Moreover, many of these languages have only very small text corpora, substantially magnifying these challenges. To this end, we examine the current state-of-the-art in language modelling, machine translation, and predictive text completion in the context of four polysynthetic languages: Guaraní, St. Lawrence Island Yupik, Central Alaskan Yup’ik, and Inuktitut. We have a particular focus on Inuit-Yupik, a highly challenging family of endangered polysynthetic languages that ranges geographically from Greenland through northern Canada and Alaska to far eastern Russia. The languages in this family are extraordinarily challenging from a computational perspective, with pervasive use of derivational morphemes in addition to rich sets of inflectional suffixes and phonological challenges at morpheme boundaries. Finally, we propose a novel framework for language modelling that combines knowledge representations from finite-state morphological analyzers with Tensor Product Representations (Smolensky, 1990) in order to enable successful neural language models capable of handling the full linguistic variety of typologically variant languages. 
    more » « less
  4. The lack of adequate training data is one of the major hurdles in WiFi-based activity recognition systems. In this paper, we propose Wi-Fringe, which is a WiFi CSI-based devicefree human gesture recognition system that recognizes named gestures, i.e., activities and gestures that have a semantically meaningful name in English language, as opposed to arbitrary free-form gestures. Given a list of activities (only their names in English text), along with zero or more training examples (WiFi CSI values) per activity, Wi-Fringe is able to detect all activities at runtime. We show for the first time that by utilizing the state-of-the-art semantic representation of English words, which is learned from datasets like the Wikipedia (e.g., Google's word-to-vector [1]) and verb attributes learned from how a word is defined (e.g, American Heritage Dictionary), we can enhance the capability of WiFi-based named gesture recognition systems that lack adequate training examples per class. We propose a novel cross-domain knowledge transfer algorithm between radio frequency (RF) and text to lessen the burden on developers and end-users from the tedious task of data collection for all possible activities. To evaluate Wi-Fringe, we collect data from four volunteers in a multi-person apartment and an office building for a total of 20 activities. We empirically quantify the trade-off between the accuracy and the number of unseen activities. 
    more » « less
  5. In this paper we describe semantic fieldwork undertaken from a distance with speakers of Akuzipik (also known as (Siberian) Yupik), an endangered Alaska Native language. We present our experiences in working both synchronously and asynchronously on temporal reference, quantification, lexical semantics of derivational morphology, and antipassives with speakers via Facebook Messenger, text message, email, mail, and telephone. We detail a number of logistical, methodological, and interpersonal challenges and benefits to conducting semantic fieldwork via these means both during the global pandemic and before/after. While fieldworkers have found the situation more challenging than in-person fieldwork in many ways, scheduling time with speakers is easier, and some speakers favor the extra time afforded them to think about their answers. Relationships among fieldworkers and speakers have benefitted from more extended interactions than are possible during in-person trips, and fieldworkers have been able to engage with speakers who had been unavailable during in-person visits. 
    more » « less