skip to main content


Title: Neural Polysynthetic Language Modelling
Many techniques in modern computational linguistics and natural language processing (NLP) make the assumption that approaches that work well on English and other widely used European (and sometimes Asian) languages are “language agnostic” – that is that they will also work across the typologically diverse languages of the world. In high-resource languages, especially those that are analytic rather than synthetic, a common approach is to treat morphologically-distinct variants of a common root (such as dog and dogs) as completely independent word types. Doing so relies on two main assumptions: that there exist a limited number of morphological inflections for any given root, and that most or all of those variants will appear in a large enough corpus (conditioned on assumptions about domain, etc.) so that the model can adequately learn statistics about each variant. Approaches like stemming, lemmatization, morphological analysis, subword segmentation, or other normalization techniques are frequently used when either of those assumptions are likely to be violated, particularly in the case of synthetic languages like Czech and Russian that have more inflectional morphology than English. Within the NLP literature, agglutinative languages like Finnish and Turkish are commonly held up as extreme examples of morphological complexity that challenge common modelling assumptions. Yet, when considering all of the world’s languages, Finnish and Turkish are closer to the average case in terms of synthesis. When we consider polysynthetic languages (those at the extreme of morphological complexity), even approaches like stemming, lemmatization, or subword modelling may not suffice. These languages have very high numbers of hapax legomena (words appearing only once in a corpus), underscoring the need for appropriate morphological handling of words, without which there is no hope for a model to capture enough statistical information about those words. Moreover, many of these languages have only very small text corpora, substantially magnifying these challenges. To this end, we examine the current state-of-the-art in language modelling, machine translation, and predictive text completion in the context of four polysynthetic languages: Guaraní, St. Lawrence Island Yupik, Central Alaskan Yup’ik, and Inuktitut. We have a particular focus on Inuit-Yupik, a highly challenging family of endangered polysynthetic languages that ranges geographically from Greenland through northern Canada and Alaska to far eastern Russia. The languages in this family are extraordinarily challenging from a computational perspective, with pervasive use of derivational morphemes in addition to rich sets of inflectional suffixes and phonological challenges at morpheme boundaries. Finally, we propose a novel framework for language modelling that combines knowledge representations from finite-state morphological analyzers with Tensor Product Representations (Smolensky, 1990) in order to enable successful neural language models capable of handling the full linguistic variety of typologically variant languages.  more » « less
Award ID(s):
1761680
NSF-PAR ID:
10285558
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Date Published:
Journal Name:
Final Report of the Frederick Jelinek Memorial Summer Workshop
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many techniques in modern computational linguistics and natural language processing (NLP) make the assumption that approaches that work well on English and other widely used European (and sometimes Asian) languages are “language agnostic” – that is that they will also work across the typologically diverse languages of the world. In high-resource languages, especially those that are analytic rather than synthetic, a common approach is to treat morphologically-distinct variants of a common root (such as dog and dogs) as completely independent word types. Doing so relies on two main assumptions: that there exist a limited number of morphological inflections for any given root, and that most or all of those variants will appear in a large enough corpus (conditioned on assumptions about domain, etc.) so that the model can adequately learn statistics about each variant. Approaches like stemming, lemmatization, morphological analysis, subword segmentation, or other normalization techniques are frequently used when either of those assumptions are likely to be violated, particularly in the case of synthetic languages like Czech and Russian that have more inflectional morphology than English. Within the NLP literature, agglutinative languages like Finnish and Turkish are commonly held up as extreme examples of morphological complexity that challenge common modelling assumptions. Yet, when considering all of the world’s languages, Finnish and Turkish are closer to the average case in terms of synthesis. When we consider polysynthetic languages (those at the extreme of morphological complexity), even approaches like stemming, lemmatization, or subword modelling may not suffice. These languages have very high numbers of hapax legomena (words appearing only once in a corpus), underscoring the need for appropriate morphological handling of words, without which there is no hope for a model to capture enough statistical information about those words. Moreover, many of these languages have only very small text corpora, substantially magnifying these challenges. To this end, we examine the current state-of-the-art in language modelling, machine translation, and predictive text completion in the context of four polysynthetic languages: Guaraní, St. Lawrence Island Yupik, Central Alaskan Yup’ik, and Inuktitut. We have a particular focus on Inuit-Yupik, a highly challenging family of endangered polysynthetic languages that ranges geographically from Greenland through northern Canada and Alaska to far eastern Russia. The languages in this family are extraordinarily challenging from a computational perspective, with pervasive use of derivational morphemes in addition to rich sets of inflectional suffixes and phonological challenges at morpheme boundaries. Finally, we propose a novel framework for language modelling that combines knowledge representations from finite-state morphological analyzers with Tensor Product Representations (Smolensky, 1990) in order to enable successful neural language models capable of handling the full linguistic variety of typologically variant languages. 
    more » « less
  2. Abstract Prior studies in multilingual language modeling (e.g., Cotterell et al., 2018; Mielke et al., 2019) disagree on whether or not inflectional morphology makes languages harder to model. We attempt to resolve the disagreement and extend those studies. We compile a larger corpus of 145 Bible translations in 92 languages and a larger number of typological features.1 We fill in missing typological data for several languages and consider corpus-based measures of morphological complexity in addition to expert-produced typological features. We find that several morphological measures are significantly associated with higher surprisal when LSTM models are trained with BPE-segmented data. We also investigate linguistically motivated subword segmentation strategies like Morfessor and Finite-State Transducers (FSTs) and find that these segmentation strategies yield better performance and reduce the impact of a language’s morphology on language modeling. 
    more » « less
  3. In this paper, we introduce a morphologically-aware electronic dictionary for St. Lawrence Island Yupik, an endangered language of the Bering Strait region. Implemented using HTML, Javascript, and CSS, the dictionary is set in an uncluttered interface and permits users to search in Yupik or in English for Yupik root words and Yupik derivational suffixes. For each matching result, our electronic dictionary presents the user with the corresponding entry from the Badten (2008) Yupik-English paper dictionary. Because Yupik is a polysynthetic language, handling of multimorphemic word forms is critical. If a user searches for an inflected Yupik word form, we perform a morphological analysis and return entries for the root word and for any derivational suffixes present in the word. This electronic dictionary should serve not only as a valuable resource for all students and speakers of Yupik, but also for field linguists working towards documentation and conservation of the language. 
    more » « less
  4. In this paper, we introduce a morphologically-aware electronic dictionary for St. Lawrence Island Yupik, an endangered language of the Bering Strait region. Implemented using HTML, Javascript, and CSS, the dictionary is set in an uncluttered interface and permits users to search in Yupik or in English for Yupik root words and Yupik derivational suffixes. For each matching result, our electronic dictionary presents the user with the corresponding entry from the Badten et al. (2008) Yupik-English paper dictionary. Because Yupik is a polysynthetic language, handling of multi- morphemic word forms is critical. If a user searches for an inflected Yupik word form, we perform a morphological analysis and return entries for the root word and for any derivational suffixes present in the word. This electronic dictionary should serve not only as a valuable resource for all students and speakers of Yupik, but also for field linguists working towards documentation and conservation of the language. 
    more » « less
  5. null (Ed.)
    This paper describes the development of the first Universal Dependencies (UD) treebank for St. Lawrence Island Yupik, an endangered language spoken in the Bering Strait region. While the UD guidelines provided a general framework for our annotations, language-specific decisions were made necessary by the rich morphology of the polysynthetic language. Most notably, we annotated a corpus at the morpheme level as well as the word level. The morpheme level annotation was conducted using an existing morphological analyzer and manual disambiguation. By comparing the two resulting annotation schemes, we argue that morpheme-level annotation is essential for polysynthetic languages like St. Lawrence Island Yupik. Word-level annotation results in degenerate trees for some Yupik sentences and often fails to capture syntactic relations that can be manifested at the morpheme level. Dependency parsing experiments provide further support for morpheme-level annotation. Implications for UD annotation of other polysynthetic languages are discussed. 
    more » « less