skip to main content


Title: A Cretaceous carbonate delta drift in the Montagna della Maiella, Italy
Abstract

The Upper Cretaceous (Campanian–Maastrichtian) bioclastic wedge of the Orfento Formation in the Montagna della Maiella, Italy, is compared to newly discovered contourite drifts in the Maldives. Like the drift deposits in the Maldives, the Orfento Formation fills a channel and builds a Miocene delta‐shaped and mounded sedimentary body in the basin that is similar in size to the approximately 350 km2large coarse‐grained bioclastic Miocene delta drifts in the Maldives. The composition of the bioclastic wedge of the Orfento Formation is also exclusively bioclastic debris sourced from the shallow‐water areas and reworked clasts of the Orfento Formation itself. In the near mud‐free succession, age‐diagnostic fossils are sparse. The depositional textures vary from wackestone to float‐rudstone and breccia/conglomerates, but rocks with grainstone and rudstone textures are the most common facies. In the channel, lensoid convex‐upward breccias, cross‐cutting channelized beds and thick grainstone lobes with abundant scours indicate alternating erosion and deposition from a high‐energy current. In the basin, the mounded sedimentary body contains lobes with a divergent progradational geometry. The lobes are built by decametre thick composite megabeds consisting of sigmoidal clinoforms that typically have a channelized topset, a grainy foreset and a fine‐grained bottomset with abundant irregular angular clasts. Up to 30 m thick channels filled with intraformational breccias and coarse grainstones pinch out downslope between the megabeds. In the distal portion of the wedge, stacked grainstone beds with foresets and reworked intraclasts document continuous sediment reworking and migration. The bioclastic wedge of the Orfento Formation has been variously interpreted as a succession of sea‐level controlled slope deposits, a shoaling shoreface complex, or a carbonate tidal delta. Current‐controlled delta drifts in the Maldives, however, offer a new interpretation because of their similarity in architecture and composition. These similarities include: (i) a feeder channel opening into the basin; (ii) an excavation moat at the exit of the channel; (iii) an overall mounded geometry with an apex that is in shallower water depth than the source channel; (iv) progradation of stacked lobes; (v) channels that pinch out in a basinward direction; and (vi) smaller channelized intervals that are arranged in a radial pattern. As a result, the Upper Cretaceous (Campanian–Maastrichtian) bioclastic wedge of the Orfento Formation in the Montagna della Maiella, Italy, is here interpreted as a carbonate delta drift.

 
more » « less
NSF-PAR ID:
10101723
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Sedimentology
Volume:
66
Issue:
4
ISSN:
0037-0746
Page Range / eLocation ID:
p. 1266-1301
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The James Ross Basin, in the northern Antarctic Peninsula, exposes which is probably the world thickest and most complete Late Cretaceous sedimentary succession of southern high latitudes. Despite its very good exposures and varied and abundant fossil fauna, precise chronological determination of its infill is still lacking. We report results from a magnetostratigraphic study on shelfal sedimentary rocks of the Marambio Group, southeastern James Ross Basin, Antarctica. The succession studied covers a ~1,200 m‐thick stratigraphic interval within the Hamilton Point, Sanctuary Cliffs and Karlsen Cliffs Members of the Snow Hill Island Formation, the Haslum Crag Formation, and the lower López de Bertodano Formation. The basic chronological reference framework is given by ammonite assemblages, which indicate a Late Campanian – Early Maastrichtian age for the studied units. Magnetostratigraphic samples were obtained from five partial sections located on James Ross and Snow Hill islands, the results from which agree partially with this previous biostratigraphical framework. Seven geomagnetic polarity reversals are identified in this work, allowing to identify the Chron C32/C33 boundary in Ammonite Assemblage 8‐1, confirming the Late Campanian age of the Hamilton Point Member. However, the identification of the Chron C32/C31 boundary in Ammonite Assemblage 8‐2 assigns the base of the Sanctuary Cliffs Member to the early Maastrichtian, which differs from the Late Campanian age previously assigned by ammonite biostratigraphy. This magnetostratigraphy spans ~14 Ma of sedimentary succession and together with previous partial magnetostratigraphies on Early‐Mid Campanian and Middle Maastrichtian to Danian columns permits a complete and continuous record of the Late Cretaceous distal deposits of the James Ross Basin. This provides the required chronological resolution to solve the intra‐basin and global correlation problems of the Late Cretaceous in the Southern Hemisphere in general and in the Weddellian province in particular, given by endemism and diachronic extinctions on invertebrate fossils, including ammonites. The new chronostratigraphic scheme allowed us to calculate sediment accumulation rates for almost the entire Late Cretaceous infill of the distal James Ross Basin (the Marambio Group), showing a monotonous accumulation for more than 8 Myr during the upper Campanian and a dramatic increase during the early Maastrichtian, controlled by tectonic and/or eustatic causes.

     
    more » « less
  2. Abstract

    Three drivers of subsidence are recognized in the Western Interior Basin: Mesozoic–early Cenozoic flexure adjacent to the thin‐skinned, eastward propagating Sevier Orogeny, Late Cretaceous–Eocene flexure associated with thick‐skinned Laramide Uplifts and Late Cretaceous dynamic subsidence. This study combines outcrop lithofacies, palaeocurrent measurements, detrital zircon geochronology, biostratigraphy, stratigraphic correlations and isopach maps of Coniacian–Maastrichtian (89–66 Ma) units to identify these subsidence mechanisms impact on basin geometry and stratigraphic architecture in the northern Utah to southwestern Wyoming segment of the North American Cordillera. Detrital zircon maximum depositional ages and biostratigraphy support that the Maastrichtian Hams Fork Conglomerate was deposited above the Moxa unconformity in the wedgetop and foredeep depozones. The Moxa unconformity underlies the progradational Ericson Formation in the distal foredeep. The Hams Fork, however, is younger than the Ericson Formation, and instead equivalent to upper Almond Formation. Therefore, the hiatus associated with the Moxa unconformity continued for several million years longer in the fold belt and proximal basin than in the distal foredeep, with Ericson Formation‐equivalent strata onlapping the Moxa unconformity towards the west. Regional thickness patterns record and constrain the timing of the transition from Sevier to Laramide‐style tectonic regimes. From 88 to 83 Ma (upper Baxter Formation) a westward‐thickening stratigraphic wedge characterized the foredeep developed by lithospheric flexure by thrust‐belt loading. Nevertheless, the presence of >500 m of subsidence >200 km from the thrust front suggests a long‐wavelength subsidence mechanism consistent with dynamic subsidence. By 83 Ma (Blair Formation) the long‐wavelength depocentre shifted away from the thrust belt, with no evidence of a Sevier foredeep. This depocentre continued migrating eastward during the early‐mid Campanian (ca. 81–77 Ma). The late Campanian–Maastrichtian (ca. 74–66 Ma) is marked by narrow sedimentary wedges adjacent to the Wind River, Granite and Uinta Mountain uplifts and attributed to flexural loading by Laramide deformation.

     
    more » « less
  3. null (Ed.)
    The tectonic and paleoceanographic setting of the Great Australian Bight (GAB) and the Mentelle Basin (adjacent to Naturaliste Plateau) offered an opportunity to investigate Cretaceous and Cenozoic climate change and ocean dynamics during the last phase of breakup among remnant Gondwana continents. Sediment recovered from sites in both regions during International Ocean Discovery Program Expedition 369 will provide a new perspective on Earth’s temperature variation at subpolar latitudes (60°–62°S) across the extremes of the mid-Cretaceous hot greenhouse climate and the cooling that followed. Basalts and prebreakup sediments were also recovered and will provide constraints regarding the type and age of the Mentelle Basin basement and processes operating during the break up of Gondwana. The primary goals of the expedition were to 1. Investigate the timing and causes for the rise and collapse of the Cretaceous hot greenhouse climate and how this climate mode affected the climate–ocean system and oceanic biota; 2. Determine the relative roles of productivity, ocean temperature, and ocean circulation at high southern latitudes during Cretaceous oceanic anoxic events (OAEs); 3. Investigate potential source regions for deep-water and intermediate-water masses in the southeast Indian Ocean and how these changed during Gondwana breakup; 4. Characterize how oceanographic conditions at the Mentelle Basin changed during the Cenozoic opening of the Tasman Gateway and restriction of the Indonesian Gateway; and 5. Resolve questions on the volcanic and sedimentary origins of the Australo-Antarctic Gulf and Mentelle Basin and provide stratigraphic control on the age and nature of the prebreakup successions. Hole U1512A in the GAB recovered a 691 m thick sequence of black claystone ranging from the lower Turonian to the lower Campanian. Age control is primarily based on calcareous nannofossils, but the presence of other microfossil groups provided consistent low-resolution control. Despite the lithologic uniformity, long- and short-term variations in natural gamma radiation and magnetic susceptibility show cyclic alternations that suggest an orbital control of sediment deposition, which will be useful for developing an astrochronology for the sequence. Sites U1513, U1514, U1515, and U1516 were drilled in water depths between 850 and 3900 m in the Mentelle Basin and penetrated 774, 517, 517, and 542 meters below seafloor, respectively. Under a thin layer of Pleistocene to upper Miocene sediment, Site U1513 cored a succession of Cretaceous units from the Campanian to the Valanginian, as well as a succession of basalts. Site U1514 sampled an expanded Pleistocene to Eocene sequence and terminated in the upper Albian. The Cenomanian to Turonian interval at Site U1514 is represented by deformed sedimentary rocks that probably represent a detachment zone. Site U1515 is located on the west Australian margin at 850 m water depth and was the most challenging site to core because much of the upper 350 m was either chert or poorly consolidated sand. However, the prebreakup Jurassic(?) sediments interpreted from the seismic profiles were successfully recovered. Site U1516 cored an expanded Pleistocene, Neogene, and Paleogene section and recovered a complete Cenomanian/Turonian boundary interval containing five layers with high organic carbon content. Study of the well-preserved calcareous microfossil assemblages from different paleodepths will enable generation of paleotemperature and biotic records that span the rise and collapse of the Cretaceous hot greenhouse (including OAEs 1d and 2), providing insight to resultant changes in deep-water and surface water circulation that can be used to test predictions from earth system models. Measurements of paleotemperature proxies and other data will reveal the timing, magnitude, and duration of peak hothouse conditions and any cold snaps that could have allowed growth of a polar ice sheet. The sites contain a record of the mid-Eocene to early Oligocene opening of the Tasman Gateway and the Miocene to Pliocene restriction of the Indonesian Gateway; both passages have important effects on global oceanography and climate. Advancing understanding of the paleoceanographic changes in a regional context will provide a global test on models of Cenomanian to Turonian oceanographic and climatic evolution related both to extreme Turonian warmth and the evolution of OAE 2. The Early Cretaceous volcanic rocks and underlying Jurassic(?) sediments cored in different parts of the Mentelle Basin provide information on the timing of different stages of the Gondwana breakup. The recovered cores provide sufficient new age constraints to underpin a reevaluation of the basin-wide seismic stratigraphy and tectonic models for the region. 
    more » « less
  4. null (Ed.)
    The tectonic and paleoceanographic setting of the Great Australian Bight (GAB) and the Mentelle Basin (MB; adjacent to Naturaliste Plateau) offered an outstanding opportunity to investigate Cretaceous and Cenozoic climate change and ocean dynamics during the last phase of breakup among remnant Gondwana continents. Sediment recovered from sites in both regions during International Ocean Discovery Program Expedition 369 will provide a new perspective on Earth’s temperature variation at sub-polar latitudes (60°–62°S) across the extremes of the mid-Cretaceous hot greenhouse climate and the cooling that followed. The primary goals of the expedition were to • Investigate the timing and causes for the rise and collapse of the Cretaceous hot greenhouse climate and how this climate mode affected the climate-ocean system and oceanic biota; • Determine the relative roles of productivity, ocean temperature, and ocean circulation at high southern latitudes during Cretaceous oceanic anoxic events (OAEs); • Identify the main source regions for deep-water and intermediate-water masses in the southeast Indian Ocean and how these changed during Gondwana breakup; • Characterize how oceanographic conditions at the MB changed during the Cenozoic opening of the Tasman Passage and restriction of the Indonesian Gateway; • Resolve questions on the volcanic and sedimentary origins of the Australo-Antarctic Gulf and Mentelle Basin and provide stratigraphic control on the age and nature of the prebreakup successions. Hole U1512A in the GAB recovered a 691 m thick sequence of black claystone ranging from the early Turonian to the early Campanian. Age control is primarily based on calcareous nannofossils, but the presence of other microfossil groups provided consistent but low-resolution control. Despite the lithologic uniformity, long- and short-term variations in natural gamma ray and magnetic susceptibility intensities show cyclic alternations that suggest an orbital control of sediment deposition that will be useful for developing an astrochronology for the sequence. Sites U1513–U1516 were drilled between 850 and 3900 m water depth in the MB and penetrated 774, 517, 517, and 542 meters below seafloor (mbsf), respectively. Under a thin layer of Pleistocene–upper Miocene sediment, Site U1513 cored a succession of Cretaceous units from the Campanian to the Valanginian. Site U1514 sampled an expanded Pleistocene–Eocene sequence and terminated in the upper Albian. The Cenomanian–Turonian interval at Site U1514 recovered deformed sedimentary rocks that probably represent a detachment zone. Site U1515 is located on the west Australian margin at 850 m water depth and was the most challenging site to core because much of the upper 350 m was either chert or poorly consolidated sand. However, the prebreakup Jurassic(?) sediments interpreted from the seismic profiles were successfully recovered. Site U1516 cored an expanded Pleistocene, Neogene, and Paleogene section and recovered a complete Cenomanian/Turonian boundary interval containing five layers with high total organic carbon content. Recovery of well-preserved calcareous microfossil assemblages from different paleodepths will enable generation of paleotemperature and biotic records that span the rise and collapse of the Cretaceous hot greenhouse (including OAEs 1d and 2), providing insight to resultant changes in deep-water and surface water circulation that can be used to test predictions from earth system models. Paleotemperature proxies and other data will reveal the timing, magnitude, and duration of peak hothouse temperatures and any cold snaps that could have allowed growth of a polar ice sheet. The sites will also record the mid-Eocene–early Oligocene opening of the Tasman Gateway and the Miocene–Pliocene restriction of the Indonesian Gateway; both passages have important effects on global oceanography and climate. Understanding the paleoceanographic changes in a regional context provides a global test on models of Cenomanian–Turonian oceanographic and climatic evolution related both to extreme Turonian warmth and the evolution of OAE 2. The Early Cretaceous volcanic rocks and underlying Jurassic(?) sediments cored in different parts of the MB provide information on the timing of different stages of the Gondwana breakup. The recovered cores provide sufficient new age constraints to underpin a reevaluation of the basin-wide seismic stratigraphy and tectonic models for the region. 
    more » « less
  5. Hotspot tracks (quasilinear chains of seamounts, ridges, and other volcanic structures) provide important records of plate motions, as well as mantle geodynamics, magma flux, and mantle source compositions. The Tristan-Gough-Walvis Ridge (TGW) hotspot track, extending from the active volcanic islands of Tristan da Cunha and Gough through a province of guyots and then along Walvis Ridge to the Etendeka flood basalt province, forms one of the most prominent and complex global hotspot tracks. The TGW hotspot track displays a tight linear age progression in which ages increase from the islands to the flood basalts (covering ~135 My). Unlike Pacific tracks, which are simple chains of seamounts that are often compared to chains of pearls, the TGW track is alternately a steep-sided narrow ridge, an oceanic plateau, subparallel linear ridges and chains of seamounts, and areas of what appear to be randomly dispersed seamounts. The track displays isotopic zonation over the last ~70 My. The zonation appears near the middle of the track just before it splits into two to three chains of ridge- and guyot-type seamounts. The older ridge is also overprinted with age-progressive late-stage volcanism, which was emplaced ~30–40 My after the initial eruptions and has a distinct isotopic composition. The plan for Expedition 391 was to drill at six sites, three along Walvis Ridge and three in the seamount (guyot) province, to gather igneous rocks to better understand the formation of track edifices, the temporal and geochemical evolution of the hotspot, and the variation in paleolatitudes at which the volcanic edifices formed. After a delay of 18 days to address a shipboard outbreak of the coronavirus disease 2019 (COVID-19) virus, Expedition 391 proceeded to drill at four of the proposed sites: three sites on the eastern Walvis Ridge around Valdivia Bank, an ocean plateau within the ridge, and one site on the lower flank of a guyot in the Center track, a ridge located between the Tristan subtrack (which extends from the end of Walvis Ridge to the island of Tristan da Cunha) and the Gough subtrack (which extends from Walvis Ridge to the island of Gough). One hole was drilled at Site U1575, located on a low portion of the northeastern Walvis Ridge north of Valdivia Bank. At this location, 209.9 m of sediments and 122.4 m of igneous basement were cored. The latter comprised 10 submarine lava units consisting of pillow, lobate, sheet, and massive lava flows, the thickest of which was ~21 m. Most lavas are tholeiitic, but some alkalic basalts were recovered. A portion of the igneous succession consists of low-Ti basalts, which are unusual because they appear in the Etendeka flood basalts but have not been previously found on Walvis Ridge. Two holes were drilled at Site U1576 on the west flank of Valdivia Bank. The first hole was terminated because a bit jammed shortly after penetrating igneous basement. Hole U1576A recovered a remarkable ~380 m thick sedimentary section consisting mostly of chalk covering a nearly complete sequence from Paleocene to Late Cretaceous (Campanian). These sediments display short and long cyclic color changes that imply astronomically forced and longer term paleoenvironmental changes. The igneous basement yielded 11 submarine lava units ranging from pillows to massive flows, which have compositions varying from tholeiitic basalt to basaltic andesite, the first occurrence of this composition recovered from the TGW track. These units are separated by seven sedimentary chalk units that range in thickness from 0.1 to 11.6 m, implying a long-term interplay of sedimentation and lava eruptions. Coring at Site U1577, on the extreme eastern flank of Valdivia Bank, penetrated a 154 m thick sedimentary section, the bottom ~108 m of which is Maastrichtian–Campanian (possibly Santonian) chalk with vitric tephra layers. Igneous basement coring progressed only 39.1 m below the sediment-basalt contact, recovering three massive submarine tholeiite basalt lava flows that are 4.1, 15.5, and >19.1 m thick, respectively. Paleomagnetic data from Sites U1577 and U1576 indicate that their volcanic basements formed just before the end of the Cretaceous Normal Superchron and during Chron 33r, shortly afterward, respectively. Biostratigraphic and paleomagnetic data suggest an east–west age progression across Valdivia Bank, becoming younger westward. Site U1578, located on a Center track guyot, provided a long and varied igneous section. After coring through 184.3 m of pelagic carbonate sediments mainly consisting of Eocene and Paleocene chalk, Hole U1578A cored 302.1 m of igneous basement. Basement lavas are largely pillows but are interspersed with sheet and massive flows. Lava compositions are mostly alkalic basalts with some hawaiite. Several intervals contain abundant olivine, and some of the pillow stacks consist of basalt with remarkably high Ti content. The igneous sequence is interrupted by 10 sedimentary interbeds consisting of chalk and volcaniclastics and ranging in thickness from 0.46 to 10.19 m. Paleomagnetic data display a change in basement magnetic polarity ~100 m above the base of the hole. Combining magnetic stratigraphy with biostratigraphic data, the igneous section is inferred to span >1 My. Abundant glass from pillow lava margins was recovered at Sites U1575, U1576, and U1578. Although the igneous penetration was only two-thirds of the planned amount, drilling during Expedition 391 obtained samples that clearly will lead to a deeper understanding of the evolution of the Tristan-Gough hotspot and its track. Relatively fresh basalts with good recovery will provide ample samples for geochemical, geochronologic, and paleomagnetic studies. Good recovery of Late Cretaceous and early Cenozoic chalk successions provides samples for paleoenvironmental study. 
    more » « less