The tectonic and paleoceanographic setting of the Great Australian Bight (GAB) and the Mentelle Basin (adjacent to Naturaliste Plateau) offered an opportunity to investigate Cretaceous and Cenozoic climate change and ocean dynamics during the last phase of breakup among remnant Gondwana continents. Sediment recovered from sites in both regions during International Ocean Discovery Program Expedition 369 will provide a new perspective on Earth’s temperature variation at subpolar latitudes (60°–62°S) across the extremes of the mid-Cretaceous hot greenhouse climate and the cooling that followed. Basalts and prebreakup sediments were also recovered and will provide constraints regarding the type and age of the Mentelle Basin basement and processes operating during the break up of Gondwana. The primary goals of the expedition were to 1. Investigate the timing and causes for the rise and collapse of the Cretaceous hot greenhouse climate and how this climate mode affected the climate–ocean system and oceanic biota; 2. Determine the relative roles of productivity, ocean temperature, and ocean circulation at high southern latitudes during Cretaceous oceanic anoxic events (OAEs); 3. Investigate potential source regions for deep-water and intermediate-water masses in the southeast Indian Ocean and how these changed during Gondwana breakup; 4. Characterize how oceanographic conditions atmore »
Expedition 369 Preliminary Report: Australia Cretaceous Climate and Tectonics
The tectonic and paleoceanographic setting of the Great Australian Bight (GAB) and the Mentelle Basin (MB; adjacent to Naturaliste Plateau) offered an outstanding opportunity to investigate Cretaceous and Cenozoic climate change and ocean dynamics during the last phase of breakup among remnant Gondwana continents. Sediment recovered from sites in both regions during International Ocean Discovery Program Expedition 369 will provide a new perspective on Earth’s temperature variation at sub-polar latitudes (60°–62°S) across the extremes of the mid-Cretaceous hot greenhouse climate and the cooling that followed. The primary goals of the expedition were to
• Investigate the timing and causes for the rise and collapse of the Cretaceous hot greenhouse climate and how this climate mode affected the climate-ocean system and oceanic biota;
• Determine the relative roles of productivity, ocean temperature, and ocean circulation at high southern latitudes during Cretaceous oceanic anoxic events (OAEs);
• Identify the main source regions for deep-water and intermediate-water masses in the southeast Indian Ocean and how these changed during Gondwana breakup;
• Characterize how oceanographic conditions at the MB changed during the Cenozoic opening of the Tasman Passage and restriction of the Indonesian Gateway;
• Resolve questions on the volcanic and sedimentary origins of the Australo-Antarctic Gulf and Mentelle more »
- Award ID(s):
- 1326927
- Publication Date:
- NSF-PAR ID:
- 10281964
- Journal Name:
- Preliminary report
- Volume:
- 369
- ISSN:
- 2372-9562
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The unique tectonic and paleoceanographic setting of the Naturaliste Plateau (NP) and Mentelle Basin (MB) offers an outstanding opportunity to investigate a range of scientific issues of global importance with particular relevance to climate change. Previous spot-core drilling at Deep Sea Drilling Project Site 258 in the western MB demonstrates the presence of an expanded upper Albian–lower Campanian chalk, marl, and claystone sequence that is nearly complete stratigraphically and yields calcareous microfossils that are mostly well preserved. This sediment package and the underlying Albian volcanic claystone unit extend across most of the MB and are targeted at the primary sites, located between 850 and 3900 m water depth. Coring the Cretaceous MB sequence at different paleodepths will allow recovery of material suitable for generating paleotemperature and biotic records that span the rise and collapse of the Cretaceous hothouse (including oceanic anoxic Events [OAEs] 1d and 2), providing insight to resultant changes in deep-water and surface water circulation that can be used to test predictions from earth system models. The high-paleolatitude (60°–62°S) location of the sites is especially important because of the enhanced sensitivity to changes in vertical gradients and surface water temperatures. Paleotemperature proxies and other data will reveal themore »
-
International Ocean Discovery Program (IODP) Expedition 369 recovered pelagic sediments spanning the Albian to Pleistocene at Sites U1513, U1514, and U1516. The cores provide an opportunity to determine paleoclimatic and paleoceanographic dynamics from a hitherto poorly sampled mid-high-latitude location across an ~110 My interval, beginning during the Cretaceous supergreenhouse when eastern Gondwana was still largely assembled and ending during the modern icehouse climate after the final breakup of Gondwana. Here we present ~650 bulk carbonate carbon and oxygen stable isotope data points and plot them alongside shipboard data sets to present a first broad documentation of chemostratigraphic data that reveal the stratigraphic position of key climatic transitions and events at Sites U1513, U1514, and U1516. These records show a pronounced long-term δ13C decrease and δ18O increase from the Albian/Cenomanian through the Pleistocene. Superimposed on this long-term trend are transient δ13C and δ18O events correlated with Oceanic Anoxic Event 2, peak Cretaceous warmth during the Turonian, Santonian to Maastrichtian cooling, the Cretaceous/Paleogene boundary, the Paleocene/Eocene Thermal Maximum, the Early Eocene Climatic Optimum, the Middle Eocene Climatic Optimum, and the Eocene–Oligocene transition. Recognizing these isotopic events confirms and refines shipboard interpretations and, more importantly, demonstrates the suitability of Sites U1513, U1514, andmore »
-
International Ocean Discovery Program (IODP) Expedition 371 drilled six sites (U1506–U1511) in the Tasman Sea, southwest Pacific, between 27 July and 26 September 2017. The primary goal was to understand Tonga-Kermadec subduction initiation through recovery of Paleogene sediment records. Secondary goals were to understand regional oceanography and climate through intervals of the Cenozoic, especially the Eocene. We recovered 2506 m of cored sediment and volcanic rock in 36.4 days of on-site drilling over a total expedition length of 58 days. The ages of strata at the base of each site were middle Eocene to Late Cretaceous. The cored intervals at five sites (U1506–U1510) sampled mostly nannofossil and foraminiferal ooze or chalk that contained volcanic or volcaniclastic intervals with variable clay content. Paleocene and Cretaceous sections at Site U1509 also contain calcareous clay and claystone. At Site U1511, a sequence of abyssal clay and diatomite was recovered with only minor amounts of carbonate. Wireline logs were collected at Sites U1507 and U1508. Our results provide the first firm basis for correlating lithostratigraphic units across a substantial part of northern Zealandia, including ties to onshore geology in New Caledonia and New Zealand. All six sites provide new stratigraphic and paleogeographic information thatmore »
-
The Amundsen Sea sector of Antarctica has long been considered the most vulnerable part of the West Antarctic Ice Sheet (WAIS) because of the great water depth at the grounding line, a subglacial bed seafloor deepening toward the interior of the continent, and the absence of substantial ice shelves. Glaciers in this configuration are thought to be susceptible to rapid or runaway retreat. Ice flowing into the Amundsen Sea Embayment is undergoing the most rapid changes of any sector of the Antarctic ice sheets outside the Antarctic Peninsula, including substantial grounding-line retreat over recent decades, as observed from satellite data. Recent models suggest that a threshold leading to the collapse of WAIS in this sector may have been already crossed and that much of the ice sheet could be lost even under relatively moderate greenhouse gas emission scenarios. Drill cores from the Amundsen Sea provide tests of several key questions about controls on ice sheet stability. The cores offer a direct offshore record of glacial history in a sector that is exclusively influenced by ice draining the WAIS, which allows clear comparisons between the WAIS history and low-latitude climate records. Today, relatively warm (modified) Circumpolar Deep Water (CDW) is impingingmore »