skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


Title: Mg Deficiency in Grain Boundaries of n‐Type Mg 3 Sb 2 Identified by Atom Probe Tomography
Abstract Highly resistive grain boundaries significantly reduce the electrical conductivity that compromises the thermoelectric figure‐of‐meritzTin n‐type polycrystalline Mg3Sb2. In this work, discovered is a Mg deficiency near grain boundaries using atom‐probe tomography. Approximately 5 at% of Mg deficiency is observed uniformly in a 10 nm region along the grain boundary without any evidence of a stable secondary or impurity phase. The off‐stoichiometry can prevent n‐type dopants from providing electrons, lowering the local carrier concentration near the grain boundary and thus the local conductivity. This observation explains how nanometer scale compositional variations can dramatically determine thermoelectriczT, and provides concrete strategies to reduce grain‐boundary resistance and increasezTin Mg3Sb2‐based materials.  more » « less
Award ID(s):
1729594 1334713 1729487
PAR ID:
10102081
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
6
Issue:
13
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mg 3 Sb 2 –Mg 3 Bi 2 alloys have been heavily studied as a competitive alternative to the state-of-the-art n-type Bi 2 (Te,Se) 3 thermoelectric alloys. Using Mg 3 As 2 alloying, we examine another dimension of exploration in Mg 3 Sb 2 –Mg 3 Bi 2 alloys and the possibility of further improvement of thermoelectric performance was investigated. While the crystal structure of pure Mg 3 As 2 is different from Mg 3 Sb 2 and Mg 3 Bi 2 , at least 15% arsenic solubility on the anion site (Mg 3 ((Sb 0.5 Bi 0.5 ) 1−x As x ) 2 : x = 0.15) was confirmed. Density functional theory calculations showed the possibility of band convergence by alloying Mg 3 Sb 2 –Mg 3 Bi 2 with Mg 3 As 2 . Because of only a small detrimental effect on the charge carrier mobility compared to cation site substitution, the As 5% alloyed sample showed zT = 0.6–1.0 from 350 K to 600 K. This study shows that there is an even larger composition space to examine for the optimization of material properties by considering arsenic introduction into the Mg 3 Sb 2 –Mg 3 Bi 2 system. 
    more » « less
  2. Abstract Nanostructuring to reduce thermal conductivity is among the most promising strategies for designing next‐generation, high‐performance thermoelectric materials. In practice, electrical grain boundary resistance can overwhelm the thermal conductivity reduction induced by nanostructuring, which results in worse overall performance. Since a large body of work has characterized the transport of both polycrystalline ceramics and single crystals of SrTiO3, it is an ideal material system for conducting a case study of electrical grain boundary resistance. An effective mass model is used to characterize the transport signatures of electrical grain boundary resistance and evaluate thermodynamic design principles for controlling that resistance. Treating the grain boundary as a secondary phase to the bulk crystallites explains the transport phenomena. Considering that the interface can be engineered by controlling oxygen partial pressure, temperature, and the addition of extrinsic elements into the grain boundary phase, the outlook for SrTiO3as a nanostructured thermoelectric is promising, and thezTcould be greater than 0.5 at room temperature. 
    more » « less
  3. Abstract Bismuth telluride is the working material for most Peltier cooling devices and thermoelectric generators. This is because Bi2Te3(or more precisely its alloys with Sb2Te3for p‐type and Bi2Se3for n‐type material) has the highest thermoelectric figure of merit,zT, of any material around room temperature. Since thermoelectric technology will be greatly enhanced by improving Bi2Te3or finding a superior material, this review aims to identify and quantify the key material properties that make Bi2Te3such a good thermoelectric. The largezTcan be traced to the high band degeneracy, low effective mass, high carrier mobility, and relatively low lattice thermal conductivity, which all contribute to its remarkably high thermoelectric quality factor. Using literature data augmented with newer results, these material parameters are quantified, giving clear insight into the tailoring of the electronic band structure of Bi2Te3by alloying, or reducing thermal conductivity by nanostructuring. For example, this analysis clearly shows that the minority carrier excitation across the small bandgap significantly limits the thermoelectric performance of Bi2Te3, even at room temperature, showing that larger bandgap alloys are needed for higher temperature operation. Such effective material parameters can also be used for benchmarking future improvements in Bi2Te3or new replacement materials. 
    more » « less
  4. Herein we study the effect alloying Yb onto the octahedral cite of Te doped Mg 3 Sb 1.5 Bi 0.5 has on transport and the material's high temperature stability. We show that the reduction in mobility can be well explained with an alloy scattering argument due to disrupting the Mg octahedral –Mg tetrahedral interaction that is important for placing the conduction band minimum at a location with high valley degeneracy. We note this interaction likely dominates the conducting states across n-type Mg 3 Sb 2 –Mg 3 Bi 2 solid solutions and explains why alloying on the anion site with Bi isn't detrimental to Mg 3 Sb 2 's mobility. In addition to disrupting this Mg–Mg interaction, we find that alloying Yb into the Mg 3 Sb 2 structure reduces its n-type dopability, likely originating from a change in the octahedral site's vacancy formation energy. We conclude showing that while the material's figure of merit is reduced with the addition of Yb alloying, its high temperature stability is greatly improved. This study demonstrates a site-specific alloying effect that will be important in other complex thermoelectric semiconductors such as Zintl phases. 
    more » « less
  5. Abstract Bi2SeO2is a promisingn‐type semiconductor to pair withp‐type BiCuSeO in a thermoelectric (TE) device. The TE figure of meritzTand, therefore, the device efficiency must be optimized by tuning the carrier concentration. However, electron concentrations in self‐dopedn‐type Bi2SeO2span several orders of magnitude, even in samples with the same nominal compositions. Such unsystematic variations in the electron concentration have a thermodynamic origin related to the variations in native defect concentrations. In this study, first‐principles calculations are used to show that the selenium vacancy, which is the source ofn‐type conductivity in Bi2SeO2, varies by 1–2 orders of magnitude depending on the thermodynamic conditions. It is predicted that the electron concentration can be enhanced by synthesizing under more Se‐poor conditions and/or at higher solid‐state reaction temperatures (TSSR), which promote the formation of selenium vacancies without introducing extrinsic dopants. The computational predictions are validated through solid‐state synthesis of Bi2SeO2. More than two orders of magnitude increase are observed in the electron concentration simply by adjusting the synthesis conditions. Additionally, a significant effect of grain boundary scattering on the electron mobility in Bi2SeO2is revealed, which can also be controlled by adjusting TSSR. By simultaneously optimizing the electron concentration and mobility, azTof ≈0.2 is achieved at 773 K for self‐dopedn‐type Bi2SeO2. The study highlights the need for careful control of thermodynamic growth conditions and demonstrates TE performance improvement by varying synthesis parameters according to thermodynamic guidelines. 
    more » « less