skip to main content


Title: Fostering sustainable improvements in science education: An analysis through four frames
Abstract

There is a pressing need to improve the sustainability of educational improvement efforts, but sustainability remains undertheorized in science education. In this article, we draw upon frameworks from organizational culture and sustainability to characterize change within a single undergraduate science department. This in‐depth longitudinal case study over 15 years provides careful documentation of the types of changes that are required to make improvements over time. In particular, we argue that cultural shifts are an important aspect of sustainable improvements. As we show, even a department that was considered an educational improvement “success story” was unable to sustain the improvements made through its initial effort. Nonetheless, we do argue that the initial effort resulted in shifts to multiple aspects of the department's culture (e.g., ways of thinking, the status of education in the department), that we characterize with Bolman and Deal's four frames. These cultural shifts provided the groundwork for a later effort, to ultimately create sustainable structures in the department resulting in sustained improvement. To conclude, we provide recommendations for how to improve the sustainability of change efforts and describe important methodological considerations for future studies of sustainability.

 
more » « less
Award ID(s):
1626565
NSF-PAR ID:
10102313
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Science Education
Volume:
103
Issue:
5
ISSN:
0036-8326
Page Range / eLocation ID:
p. 1125-1150
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background. While educational change often involves bold talk about disruptive ideas that eventually need to be institutionalized, a critical but often less visible element of sustaining change is work such as maintaining a shared vision, onboarding new people, negotiating small issues in light of department culture, and coordinating big changes with existing efforts. While knowledge about these forms of invisible work exist in other disciplines, these issues seem understudied in engineering education. This work approaches this issue of invisible knowledge with a design orientation, and specifically draws on the field of design-based research. Increasingly, design is recognized as a knowledge producing activity, resulting in insights into generative ways of defining problems, frameworks for generating solutions to problems, examples of what it looks like to connect theory to specific problems. Purpose: As a design effort, this work asks: How might a specific department create a sustainable practice to support the invisible work of coordinating and sustaining change? As a scholarly effort, this instance of design can result in a culminating problem definition, a solution framework, and examples of theory use that represent knowledge contributions. Approach: A mechanical engineering department in a small, private educational institution worked for four months to develop a sustainable practice to support invisible work of coordinating and sustaining change. Following an initial commitment of 60 minutes once every three weeks and 3-hour retreat to explore possibilities, the department then iteratively designed and then carried out sample conversations. Each iteration involved specifying the goals of the conversation, how to have the conversation (the design) and the rationale for connecting the design to the goals. Traces from the process represent the data for this work. Results. Over time, the conversations came to be designed along four dimensions: topic, time allocation, turn-taking, and traces. We have learned that topics that are of immediate relevance to everyone are particularly powerful (initial topics included "being back on campus" and "navigating in-person"). We are currently leveraging a time allocation that devotes the most time to hearing from each participant on the topic, then time for the group to cautiously explore synthesis, and finally time for the group to weigh in on future conversation topics. Approaches to turn-taking have involved decentralization (e.g., each current speaker invites the next speaker) and respect (speakers have a chance to "pass" and then choose the next speaker). Finally, we are experimenting with how to balance the creation of traces as a natural part of the process, such as through real-time transcription in the chat feature of zoom. Undergirding each of these dimensions are connections to the intended goals, connections to relevant theory, and connections to the long-term goal of sustainability. In presenting these ideas, we will focus on how the information being offered connects to the current body of knowledge in engineering education. Conclusion. It is promising to treat the work of department culture as a design problem. The ideas in this framework may serve as inspiration to others seeking to create their own sustainable mechanisms but with different conditions. During the winter and spring of 2022, the approach will be additionally tested via six deployments, and insights will be shared in subsequent publications. 
    more » « less
  2. Background. While educational change often involves bold talk about disruptive ideas that eventually need to be institutionalized, a critical but often less visible element of sustaining change is work such as maintaining a shared vision, onboarding new people, negotiating small issues in light of department culture, and coordinating big changes with existing efforts. While knowledge about these forms of invisible work exist in other disciplines, these issues seem understudied in engineering education. This work approaches this issue of invisible knowledge with a design orientation, and specifically draws on the field of design-based research. Increasingly, design is recognized as a knowledge producing activity, resulting in insights into generative ways of defining problems, frameworks for generating solutions to problems, examples of what it looks like to connect theory to specific problems. Purpose: As a design effort, this work asks: How might a specific department create a sustainable practice to support the invisible work of coordinating and sustaining change? As a scholarly effort, this instance of design can result in a culminating problem definition, a solution framework, and examples of theory use that represent knowledge contributions. Approach: A mechanical engineering department in a small, private educational institution worked for four months to develop a sustainable practice to support invisible work of coordinating and sustaining change. Following an initial commitment of 60 minutes once every three weeks and 3-hour retreat to explore possibilities, the department then iteratively designed and then carried out sample conversations. Each iteration involved specifying the goals of the conversation, how to have the conversation (the design) and the rationale for connecting the design to the goals. Traces from the process represent the data for this work. Results. Over time, the conversations came to be designed along four dimensions: topic, time allocation, turn-taking, and traces. We have learned that topics that are of immediate relevance to everyone are particularly powerful (initial topics included "being back on campus" and "navigating in-person"). We are currently leveraging a time allocation that devotes the most time to hearing from each participant on the topic, then time for the group to cautiously explore synthesis, and finally time for the group to weigh in on future conversation topics. Approaches to turn-taking have involved decentralization (e.g., each current speaker invites the next speaker) and respect (speakers have a chance to "pass" and then choose the next speaker). Finally, we are experimenting with how to balance the creation of traces as a natural part of the process, such as through real-time transcription in the chat feature of zoom. Undergirding each of these dimensions are connections to the intended goals, connections to relevant theory, and connections to the long-term goal of sustainability. In presenting these ideas, we will focus on how the information being offered connects to the current body of knowledge in engineering education. Conclusion. It is promising to treat the work of department culture as a design problem. The ideas in this framework may serve as inspiration to others seeking to create their own sustainable mechanisms but with different conditions. During the winter and spring of 2022, the approach will be additionally tested via six deployments, and insights will be shared in subsequent publications. 
    more » « less
  3. Student success in educational ecosystems is a primary goal of leadership efforts. Yet, power and privilege affect the racial, classist, and gendered implications of STEM education work in K-12 education as well as higher education. Interventions have been done at various levels, but despite the hard work of implementation, this has not resulted in dramatic improvements to STEM educational ecosystems or student engagement within them. Often, these implementations are done at the faculty/student level or institutional level but not at the departmental leadership level. The NSF-supported Eco-STEM Project proposes to establish a healthy educational ecosystem that supports all individuals (students, faculty, and staff) to thrive. Project activities are guided by ecosystem paradigm measures that support a culturally responsive learning/working environment; make teaching and learning rewarding and fulfilling; and emphasize community assets to enhance motivation, excellence, and success. For this work-in-progress paper, we describe the development of a leadership community of practice, comprised of department chairs of science and engineering departments, at [university name redacted], a large state-funded comprehensive majority minority master’s granting institution in the Southwest United States. In the year-long Leadership Community of Practice (L-CoP), the Fellows work on unpacking issues of power and privilege in their roles as STEM leaders and educators. During the Fall semester of 2022, the Fellows participated in four sessions. They engaged in readings, videos, active-learning activities, and critically reflective dialogues to facilitate discussion and reflection on identity, agency, the culture of power in STEM, and interventions and change in higher education. The L-CoP starts with Fellows reflecting on their social and professional identities and how their identities influence their teaching and leadership philosophies. Then Fellows are introduced to the framework of the culture of power in science--where they explore the social, cultural, and political impacts of preparing for a STEM college education. Finally, they explore theories and models of change for STEM higher education spaces. Through this curriculum, we aim to examine mental models to deconstruct notions that uphold the culture of power in science by instead building counternarratives with faculty and students in their departments. Through dialogues within the L-CoP, leaders discuss classroom/program climate, structure, and vibrancy to better support healthy educational ecosystems, as well as their participation in these systems. We are currently in the middle of our first implementation of the L-CoP. The first cohort consists of six L-CoP Fellows with highly diverse positionalities; there is racial, ethnic, and gender diversity, and all Fellows are full professors in the tenure line and chairs of their respective departments. We present details of the L-CoP, including the formation of the Fellow cohort, training of the facilitators, structure of the sessions, and initial results of our mid-program survey. The survey results provide insights into potential improvements to our tools and program. We also share some of the Fellows’ and facilitators’ reflections demonstrating a shift toward an ecosystem mindset. We prefer to present this work as a poster at the 2023 ASEE Annual Conference. 
    more » « less
  4. Abstract

    Several studies have shown that the use of active learning strategies can help improve student success and persistence in STEM-related fields. Despite this, widespread adoption of active learning strategies is not yet a reality as institutional change can be difficult to enact. Accordingly, it is important to understand how departments in institutions of higher education can initiate and sustain meaningful change. We use interview data collected from two institutions to examine how leaders at two universities contributed to the initiation, implementation, and sustainability of active learning in undergraduate calculus and precalculus courses. At each institution, we spoke to 27 stakeholders involved in changes (including administrators, department chairs, course coordinators, instructors, and students). Our results show that the success of these changes rested on the ability of leaders to stimulate significant cultural shifts within the mathematics department. We use communities of transformation theory and the four-frame model of organization change in STEM departments in order to better understand how leaders enabled such cultural shifts. Our study highlights actions leaders may take to support efforts at improving education by normalizing the use of active learning strategies and provides potential reasons for the efficacy of such actions. These results underscore the importance of establishing flexible, distributed leadership models that attend to the cultural and operational norms of a department. Such results may inform leaders at other institutions looking to improve education in their STEM departments.

     
    more » « less
  5. Despite limited success in broadening participation in engineering with rural and Appalachian youth, there remain challenges such as misunderstandings around engineering careers, misalignments with youth’s sociocultural background, and other environmental barriers. In addition, middle school science teachers may be unfamiliar with engineering or how to integrate engineering concepts into science lessons. Furthermore, teachers interested in incorporating engineering into their curriculum may not have the time or resources to do so. The result may be single interventions such as a professional development workshop for teachers or a career day for students. However, those are unlikely to cause major change or sustained interest development. To address these challenges, we have undertaken our NSF ITEST project titled, Virginia Tech Partnering with Educators and Engineers in Rural Schools (VT PEERS). Through this project, we sought to improve youth awareness of and preparation for engineering related careers and educational pathways. Utilizing regular engagement in engineering-aligned classroom activities and culturally relevant programming, we sought to spark an interest with some students. In addition, our project involves a partnership with teachers, school districts, and local industry to provide a holistic and, hopefully, sustainable influence. By engaging over time we aspired to promote sustainability beyond this NSF project via increased teacher confidence with engineering related activities, continued integration within their science curriculum, and continued relationships with local industry. From the 2017-2020 school years the project has been in seven schools across three rural counties. Each year a grade level was added; that is, the teachers and students from the first year remained for all three years. Year 1 included eight 6th grade science teachers, year 2 added eight 7th grade science teachers, and year 3 added three 8th grade science teachers and a career and technology teacher. The number of students increased from over 500 students in year 1 to over 2500 in year 3. Our three industry partners have remained active throughout the project. During the third and final year in the classrooms, we focused on the sustainable aspects of the project. In particular, on how the intervention support has evolved each year based on data, support requests from the school divisions, and in scaffolding “ownership” of the engineering activities. Qualitative data were used to support our understanding of teachers’ confidence to incorporate engineering into their lessons plans and how their confidence changed over time. Noteworthy, our student data analysis resulted in an instrument change for the third year; however due to COVID, pre and post data was limited to schools who taught on a semester basis. Throughout the project we have utilized the ITEST STEM Workforce Education Helix model to support a pragmatic approach of our research informing our practice to enable an “iterative relationship between STEM content development and STEM career development activities… within the cultural context of schools, with teachers supported by professional development, and through programs supported by effective partnerships.” For example, over the course of the project, scaffolding from the University leading interventions to teachers leading interventions occurred. 
    more » « less