skip to main content


Title: Stabilization of Formate Dehydrogenase in a Metal–Organic Framework for Bioelectrocatalytic Reduction of CO 2
Abstract

The efficient fixation of excess CO2from the atmosphere to yield value‐added chemicals remains crucial in response to the increasing levels of carbon emission. Coupling enzymatic reactions with electrochemical regeneration of cofactors is a promising technique for fixing CO2, while producing biomass which can be further transformed into biofuels. Herein, a bioelectrocatalytic system was established by depositing crystallites of a mesoporous metal–organic framework (MOF), termed NU‐1006, containing formate dehydrogenase, on a fluorine‐doped tin oxide glass electrode modified with Cp*Rh(2,2′‐bipyridyl‐5,5′‐dicarboxylic acid)Cl2complex. This system converts CO2into formic acid at a rate of 79±3.4 mm h−1with electrochemical regeneration of the nicotinamide adenine dinucleotide cofactor. The MOF–enzyme composite exhibited significantly higher catalyst stability when subjected to non‐native conditions compared to the free enzyme, doubling the formic acid yield.

 
more » « less
NSF-PAR ID:
10102457
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
58
Issue:
23
ISSN:
1433-7851
Page Range / eLocation ID:
p. 7682-7686
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The efficient fixation of excess CO2from the atmosphere to yield value‐added chemicals remains crucial in response to the increasing levels of carbon emission. Coupling enzymatic reactions with electrochemical regeneration of cofactors is a promising technique for fixing CO2, while producing biomass which can be further transformed into biofuels. Herein, a bioelectrocatalytic system was established by depositing crystallites of a mesoporous metal–organic framework (MOF), termed NU‐1006, containing formate dehydrogenase, on a fluorine‐doped tin oxide glass electrode modified with Cp*Rh(2,2′‐bipyridyl‐5,5′‐dicarboxylic acid)Cl2complex. This system converts CO2into formic acid at a rate of 79±3.4 mm h−1with electrochemical regeneration of the nicotinamide adenine dinucleotide cofactor. The MOF–enzyme composite exhibited significantly higher catalyst stability when subjected to non‐native conditions compared to the free enzyme, doubling the formic acid yield.

     
    more » « less
  2. Abstract

    A series of molecular Mn catalysts featuring aniline groups in the second‐coordination sphere has been developed for electrochemical and photochemical CO2reduction. The arylamine moieties were installed at the 6 position of 2,2’‐bipyridine (bpy) to generate a family of isomers in which the primary amine is located at theortho‐(1‐Mn),meta‐(2‐Mn), orpara‐site (3‐Mn) of the aniline ring. The proximity of the second‐sphere functionality to the active site is a critical factor in determining catalytic performance. Catalyst1‐Mn, possessing the shortest distance between the amine and the active site, significantly outperformed the rest of the series and exhibited a 9‐fold improvement in turnover frequency relative to parent catalyst Mn(bpy)(CO)3Br (901 vs. 102 s−1, respectively) at 150 mV lower overpotential. The electrocatalysts operated with high faradaic efficiencies (≥70 %) for CO evolution using trifluoroethanol as a proton source. Notably, under photocatalytic conditions, a concentration‐dependent shift in product selectivity from CO (at high [catalyst]) to HCO2H (at low [catalyst]) was observed with turnover numbers up to 4760 for formic acid and high selectivities for reduced carbon products.

     
    more » « less
  3. Abstract

    The products of the Cl‐atom‐initiated oxidation of hydroxyacetone (HYAC, CH3C(O)CH2OH) have been examined under conditions relevant to the earth's lower atmosphere. Over the range of temperatures studied (252‐298 K), in the absence of NOx, methylglyoxal (CH3C(=O)CH=O, MGLY) was formed with a primary yield >84% (96 ± 9% at 298 K), while in the presence of elevated NOx, MGLY and formic acid were both formed as major primary products. In contrast to a previous study, acetic acid was not identified as a major primary product under the conditions studied. The results are quantitatively interpreted from a consideration of the formation of a stabilized CH3C(O)CH(OH)OO• radical, either in a ≈50% yield from the addition of O2to CH3C(O)CH•(OH) or in 100% yield from the addition of HO2to MGLY. At high temperature and low NOx, decomposition of the stabilized CH3C(O)CH(OH)OO• radical to MGLY is favored, while lower temperatures and conditions of high NOxfavor bimolecular reactions of the stabilized radical, with subsequent production of formic acid. Analysis of the data allows for a semiquantitative determination ofK3 = (2.9 ± 0.4) × 10−16cm3molecule−1, for the HO2+ MGLY ↔ CH3C(O)CH(OH)OO• equilibrium process at 298 K and a roughly order of magnitude increase inK3at 252 K.

     
    more » « less
  4. Abstract

    Recent emphasis on carbon dioxide utilization has necessitated the exploration of different catalyst compositions other than copper-based systems that can significantly improve the activity and selectivity towards specific CO2 reduction products at low applied potential. In this study, a binary CoTe has been reported as an efficient electrocatalyst for CO2reduction in aqueous medium under ambient conditions at neutral pH. CoTe showed high Faradaic efficiency and selectivity of 86.83 and 75%, respectively, for acetic acid at very low potential of − 0.25 V vs RHE. More intriguingly, C1 products like formic acid was formed preferentially at slightly higher applied potential achieving high formation rate of 547.24 μmol cm−2 h−1 at − 1.1 V vs RHE. CoTe showed better CO2RR activity when compared with Co3O4, which can be attributed to the enhanced electrochemical activity of the catalytically active transition metal center as well as improved intermediate adsorption on the catalyst surface. While reduced anion electronegativity and improved lattice covalency in tellurides enhance the electrochemical activity of Co, high d-electron density improves the intermediate CO adsorption on the catalyst site leading to CO2reduction at lower applied potential and high selectivity for C2products. CoTe also shows stable CO2RR catalytic activity for 50 h and low Tafel slope (50.3 mV dec–1) indicating faster reaction kinetics and robust functionality. Selective formation of value-added C2products with low energy expense can make these catalysts potentially viable for integration with other CO2capture technologies thereby, helping to close the carbon loop.

     
    more » « less
  5. Abstract

    Effective delivery of therapeutic proteins is important for many biomedical applications. Yet, the stabilization of proteins during delivery and long‐term storage remains a significant challenge. Herein, a trehalose‐based hydrogel is reported that stabilizes insulin to elevated temperatures prior to glucose‐triggered release. The hydrogel is synthesized using a polymer with trehalose side chains and a phenylboronic acid end‐functionalized 8‐arm poly(ethylene glycol) (PEG). The hydroxyls of the trehalose side chains form boronate ester linkages with the PEG boronic acid cross‐linker to yield hydrogels without any further modification of the original trehalose polymer. Dissolution of the hydrogel is triggered upon addition of glucose as a stronger binder to boronic acid (Kb= 2.57 vs 0.48m−1for trehalose), allowing the insulin that is entrapped during gelation to be released in a glucose‐responsive manner. Moreover, the trehalose hydrogel stabilizes the insulin as determined by immunobinding after heating up to 90 °C. After 30 min heating, 74% of insulin is detected by enzyme‐linked immunosorbent assay in the presence of the trehalose hydrogel, whereas only 2% is detected without any additives.

     
    more » « less