skip to main content


Title: Cobalt telluride electrocatalyst for selective electroreduction of CO2 to value-added chemicals
Abstract

Recent emphasis on carbon dioxide utilization has necessitated the exploration of different catalyst compositions other than copper-based systems that can significantly improve the activity and selectivity towards specific CO2 reduction products at low applied potential. In this study, a binary CoTe has been reported as an efficient electrocatalyst for CO2reduction in aqueous medium under ambient conditions at neutral pH. CoTe showed high Faradaic efficiency and selectivity of 86.83 and 75%, respectively, for acetic acid at very low potential of − 0.25 V vs RHE. More intriguingly, C1 products like formic acid was formed preferentially at slightly higher applied potential achieving high formation rate of 547.24 μmol cm−2 h−1 at − 1.1 V vs RHE. CoTe showed better CO2RR activity when compared with Co3O4, which can be attributed to the enhanced electrochemical activity of the catalytically active transition metal center as well as improved intermediate adsorption on the catalyst surface. While reduced anion electronegativity and improved lattice covalency in tellurides enhance the electrochemical activity of Co, high d-electron density improves the intermediate CO adsorption on the catalyst site leading to CO2reduction at lower applied potential and high selectivity for C2products. CoTe also shows stable CO2RR catalytic activity for 50 h and low Tafel slope (50.3 mV dec–1) indicating faster reaction kinetics and robust functionality. Selective formation of value-added C2products with low energy expense can make these catalysts potentially viable for integration with other CO2capture technologies thereby, helping to close the carbon loop.

 
more » « less
Award ID(s):
2102609
NSF-PAR ID:
10375020
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Materials for Renewable and Sustainable Energy
Volume:
11
Issue:
2
ISSN:
2194-1459
Page Range / eLocation ID:
p. 115-129
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sn‐based materials are identified as promising catalysts for the CO2electroreduction (CO2RR) to formate (HCOO). However, their insufficient selectivity and activity remain grand challenges. A new type of SnO2nanosheet with simultaneous N dopants and oxygen vacancies (VO‐rich N‐SnO2NS) for promoting CO2conversion to HCOOis reported. Due to the likely synergistic effect of N dopant andVO, theVO‐rich N‐SnO2NS exhibits high catalytic selectivity featured by an HCOOFaradaic efficiency (FE) of 83% at0.9 V and an FE of>90% for all C1 products (HCOOand CO) at a wide potential range from −0.9 to1.2 V. Low coordination Sn–N moieties are the active sites with optimal electronic and geometric structures regulated byVOand N dopants. Theoretical calculations elucidate that the reaction free energy of HCOO* protonation is decreased on theVO‐rich N‐SnO2NS, thus enhancing HCOOselectivity. The weakened H* adsorption energy also inhibits the hydrogen evolution reaction, a dominant side reaction during the CO2RR. Furthermore, using the catalyst as the cathode, a spontaneous Galvanic Zn‐CO2cell and a solar‐powered electrolysis process successfully demonstrated the efficient HCOOgeneration through CO2conversion and storage.

     
    more » « less
  2. Metal-free carbon materials have emerged as cost-effective and high-performance catalysts for the production of hydrogen peroxide (H 2 O 2 ) through the two-electron oxygen reduction reaction (ORR). Here, we show that 3D crumpled graphene with controlled oxygen and defect configurations significantly improves the electrocatalytic production of H 2 O 2 . The crumpled graphene electrocatalyst with optimal defect structures and oxygen functional groups exhibits outstanding H 2 O 2 selectivity of 92–100% in a wide potential window of 0.05–0.7 V vs. reversible hydrogen electrode (RHE) and a high mass activity of 158 A g −1 at 0.65 V vs. RHE in alkaline media. In addition, the crumpled graphene catalyst showed an excellent H 2 O 2 production rate of 473.9 mmol gcat −1 h −1 and stability over 46 h at 0.4 V vs. RHE. Moreover, density functional theory calculations revealed the role of the functional groups and defect sites in the two-electron ORR pathway through the scaling relation between OOH and O adsorption strengths. These results establish a structure-mechanism-performance relationship of functionalized carbon catalysts for the effective production of H 2 O 2 . 
    more » « less
  3. Identifying new catalyst composition for carbon dioxide electroreduction to high-value products has been the center of attraction over the last several years. In this article, nickel selenide (NiSe 2 ) has been identified as a high-efficiency electrocatalyst for CO 2 electroreduction at neutral pH. Interestingly, NiSe 2 shows high selectivity towards specific reduction products, forming carbon-rich C2 products like ethanol and acetic acid exclusively at lower applied potential with 98.45% faradaic efficiency, while C1 products formic acid and carbon monoxide formed preferentially at higher applied potential. More importantly, the C2 products such as acetic acid and ethanol are obtained at very low applied potential, which further corroborates the novelty of this catalyst in CO 2 utilization with minimal energy expense. The NiSe 2 catalyst surface has been studied through density functional theory calculations which show that the adsorption energy of the CO intermediate on the NiSe 2 surface is optimal for extensive reduction through formation of C–C bonds but not strong enough for surface passivation, thus leading to high selectivity for C2 products. Such high efficiency of the catalyst can be a result of increased covalency of the selenide anion along with a high d-electron density of the Ni center. The hydrothermally synthesized NiSe 2 sample also shows high activity for oxygen evolution through electrocatalytic water splitting in alkaline medium, effectively making it a bifunctional catalyst which can lower the concentration of the atmospheric pollutant CO 2 while at the same time enriching the air with O 2 . 
    more » « less
  4. null (Ed.)
    The selectivity towards a specific C 2+ product, such as ethylene (C 2 H 4 ), is sensitive to the surface structure of copper (Cu) catalysts in carbon dioxide (CO 2 ) electro-reduction. The fundamental understanding of such sensitivity can guide the development of advanced electrocatalysts, although it remains challenging at the atomic level. Here we demonstrated that planar defects, such as stacking faults, could drive the electrocatalysis of CO 2 -to-C 2 H 4 conversion with higher selectivity and productivity than Cu(100) facets in the intermediate potential region (−0.50 ∼ −0.65 V vs. RHE). The unique right bipyramidal Cu nanocrystals containing a combination of (100) facets and a set of parallel planar defects delivered 67% faradaic efficiency (FE) for C 2 H 4 and a partial current density of 217 mA cm −2 at −0.63 V vs. RHE. In contrast, Cu nanocubes with exclusive (100) facets exhibited only 46% FE for C 2 H 4 and a partial current density of 87 mA cm −2 at an identical potential. Both ex situ CO temperature-programmed desorption and in situ Raman spectroscopy analysis implied that the stronger *CO adsorption on planar defect sites facilitates CO generation kinetics, which contributes to a higher surface coverage of *CO and in turn an enhanced reaction rate of C–C coupling towards C 2+ products, especially C 2 H 4 . 
    more » « less
  5. Abstract

    Ammonia (NH3) electrosynthesis gains significant attention as NH3is essentially important for fertilizer production and fuel utilization. However, electrochemical nitrogen reduction reaction (NRR) remains a great challenge because of low activity and poor selectivity. Herein, a new class of atomically dispersed Ni site electrocatalyst is reported, which exhibits the optimal NH3yield of 115 µg cm−2h−1at –0.8 V versus reversible hydrogen electrode (RHE) under neutral conditions. High faradic efficiency of 21 ± 1.9% is achieved at ‐0.2 V versus RHE under alkaline conditions, although the ammonia yield is lower. The Ni sites are stabilized with nitrogen, which is verified by advanced X‐ray absorption spectroscopy and electron microscopy. Density functional theory calculations provide insightful understanding on the possible structure of active sites, relevant reaction pathways, and confirm that the Ni‐N3sites are responsible for the experimentally observed activity and selectivity. Extensive controls strongly suggest that the atomically dispersed NiN3site‐rich catalyst provides more intrinsically active sites than those in N‐doped carbon, instead of possible environmental contamination. This work further indicates that single‐metal site catalysts with optimal nitrogen coordination is very promising for NRR and indeed improves the scaling relationship of transition metals.

     
    more » « less