Described is a systematic comparison of factors impacting the relative rates and selectivities of C(sp3)−C and C(sp3)−O bond‐forming reactions at high‐valent Ni as a function of oxidation state. Two Ni complexes are compared: a cationic octahedral NiIVcomplex ligated by tris(pyrazolyl)borate and a cationic octahedral NiIIIcomplex ligated by tris(pyrazolyl)methane. Key features of reactivity/selectivity are revealed: 1) C(sp3)−C(sp2) bond‐forming reductive elimination occurs from both centers, but the NiIIIcomplex reacts up to 300‐fold faster than the NiIV, depending on the reaction conditions. The relative reactivity is proposed to derive from ligand dissociation kinetics, which vary as a function of oxidation state and the presence/absence of visible light. 2) Upon the addition of acetate (AcO−), the NiIVcomplex exclusively undergoes C(sp3)−OAc bond formation, while the NiIIIanalogue forms the C(sp3)−C(sp2) coupled product selectively. This difference is rationalized based on the electrophilicity of the respective M−C(sp3) bonds, and thus their relative reactivity towards outer‐sphere SN2‐type bond‐forming reactions.
Described is a systematic comparison of factors impacting the relative rates and selectivities of C(sp3)−C and C(sp3)−O bond‐forming reactions at high‐valent Ni as a function of oxidation state. Two Ni complexes are compared: a cationic octahedral NiIVcomplex ligated by tris(pyrazolyl)borate and a cationic octahedral NiIIIcomplex ligated by tris(pyrazolyl)methane. Key features of reactivity/selectivity are revealed: 1) C(sp3)−C(sp2) bond‐forming reductive elimination occurs from both centers, but the NiIIIcomplex reacts up to 300‐fold faster than the NiIV, depending on the reaction conditions. The relative reactivity is proposed to derive from ligand dissociation kinetics, which vary as a function of oxidation state and the presence/absence of visible light. 2) Upon the addition of acetate (AcO−), the NiIVcomplex exclusively undergoes C(sp3)−OAc bond formation, while the NiIIIanalogue forms the C(sp3)−C(sp2) coupled product selectively. This difference is rationalized based on the electrophilicity of the respective M−C(sp3) bonds, and thus their relative reactivity towards outer‐sphere SN2‐type bond‐forming reactions.
more » « less- NSF-PAR ID:
- 10102504
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie
- Volume:
- 131
- Issue:
- 27
- ISSN:
- 0044-8249
- Page Range / eLocation ID:
- p. 9202-9206
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Metal–metal bonds play a vital role in stabilizing key intermediates in bond‐formation reactions. We report that binuclear benzo[
h ]quinoline‐ligated NiIIcomplexes, upon oxidation, undergo reductive elimination to form carbon–halogen bonds. A mixed‐valent Ni(2.5+)–Ni(2.5+) intermediate is isolated. Further oxidation to NiIII, however, is required to trigger reductive elimination. The binuclear NiIII–NiIIIintermediate lacks a Ni−Ni bond. Each NiIIIundergoes separate, but fast reductive elimination, giving rise to NiIspecies. The reactivity of these binuclear Ni complexes highlights the fundamental difference between Ni and Pd in mediating bond‐formation processes. -
Nickel complexes have been widely employed as catalysts in C–C and C–heteroatom bond formation reactions. While Ni(0), Ni( i ), and Ni( ii ) intermediates are most relevant in these transformations, recently Ni( iii ) and Ni( iv ) species have also been proposed to play a role in catalysis. Reported herein is the synthesis, detailed characterization, and reactivity of a series of Ni( ii ) and Ni( iii ) metallacycle complexes stabilized by tetradentate pyridinophane ligands with various N-substituents. Interestingly, while the oxidation of the Ni( ii ) complexes with various other oxidants led to exclusive C–C bond formation in very good yields, the use of O 2 or H 2 O 2 as oxidants led to formation of appreciable amounts of C–O bond formation products, especially for the Ni( ii ) complex supported by an asymmetric pyridinophane ligand containing one tosyl N-substituent. Moreover, cryo-ESI-MS studies support the formation of several high-valent Ni species as key intermediates in this uncommon Ni-mediated oxygenase-type chemistry.more » « less
-
Abstract We report a nickel complex for catalytic oxidation of ammonia to dinitrogen under ambient conditions. Using the aryloxyl radical 2,4,6‐tri‐
tert ‐butylphenoxyl (t Bu3ArO⋅) as a H atom acceptor to cleave the N−H bond of a coordinated NH3ligand up to 56 equiv of N2per Ni center can be generated. Employing theN ‐oxyl radical 2,2,6,6‐(tetramethylpiperidin‐1‐yl)oxyl (TEMPO⋅) as the H‐atom acceptor, up to 15 equiv of N2per Ni center are formed. A bridging Ni‐hydrazine product identified by isotopic nitrogen (15N) studies and supported by computational models indicates the N−N bond forming step occurs by bimetallic homocoupling of two paramagnetic [Ni]−NH2fragments. Ni‐mediated hydrazine disproportionation to N2and NH3completes the catalytic cycle. -
Abstract We report a nickel complex for catalytic oxidation of ammonia to dinitrogen under ambient conditions. Using the aryloxyl radical 2,4,6‐tri‐
tert ‐butylphenoxyl (t Bu3ArO⋅) as a H atom acceptor to cleave the N−H bond of a coordinated NH3ligand up to 56 equiv of N2per Ni center can be generated. Employing theN ‐oxyl radical 2,2,6,6‐(tetramethylpiperidin‐1‐yl)oxyl (TEMPO⋅) as the H‐atom acceptor, up to 15 equiv of N2per Ni center are formed. A bridging Ni‐hydrazine product identified by isotopic nitrogen (15N) studies and supported by computational models indicates the N−N bond forming step occurs by bimetallic homocoupling of two paramagnetic [Ni]−NH2fragments. Ni‐mediated hydrazine disproportionation to N2and NH3completes the catalytic cycle.