skip to main content


Title: N 3 -Ligated nickel( ii ) diketonate complexes: synthesis, characterization and evaluation of O 2 reactivity
Interest in O 2 -dependent aliphatic carbon–carbon (C–C) bond cleavage reactions of first row divalent metal diketonate complexes stems from the desire to further understand the reaction pathways of enzymes such as DKE1 and to extract information to develop applications in organic synthesis. A recent report of O 2 -dependent aliphatic C–C bond cleavage at ambient temperature in Ni( ii ) diketonate complexes supported by a tridentate nitrogen donor ligand [(MBBP)Ni(PhC(O)CHC(O)Ph)]Cl ( 7-Cl ; MBBP = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine) in the presence of NEt 3 spurred our interest in further examining the chemistry of such complexes. A series of new TERPY-ligated Ni( ii ) diketonate complexes of the general formula [(TERPY)Ni(R 2 -1,3-diketonate)]ClO 4 ( 1 : R = CH 3 ; 2 : R = C(CH 3 ) 3 ; 3 : R = Ph) was prepared under air and characterized using single crystal X-ray crystallography, elemental analysis, 1 H NMR, ESI-MS, FTIR, and UV-vis. Analysis of the reaction mixtures in which these complexes were generated using 1 H NMR and ESI-MS revealed the presence of both the desired diketonate complex and the bis-TERPY derivative [(TERPY) 2 Ni](ClO 4 ) 2 ( 4 ). Through selective crystallization 1–3 were isolated in analytically pure form. Analysis of reaction mixtures leading to the formation of the MBBP analogs [(MBBP)Ni(R 2 -1,3-diketonate)]X (X = ClO 4 : 5 : R = CH 3 ; 6 : R = C(CH 3 ) 3 ; 7-ClO4 : R = Ph; X = Cl: 7-Cl : R = Ph) using 1 H NMR and ESI-MS revealed the presence of [(MBBP) 2 Ni](ClO 4 ) 2 ( 8 ). Analysis of aerobic acetonitrile solutions of analytically pure 1–3 , 5 and 6 containing NEt 3 and in some cases H 2 O using 1 H NMR and UV-vis revealed evidence for the formation of additional bis-ligand complexes ( 4 and 8 ) but suggested no oxidative diketonate cleavage reactivity. Analysis of the organic products generated from 3 , 7-ClO4 and 7-Cl revealed unaltered dibenzoylmethane. Our results therefore indicate that N 3 -ligated Ni( ii ) complexes of unsubstituted diketonate ligands do not exhibit O 2 -dependent aliphatic C–C bond clevage at room temperature, including in the presence of NEt 3 and/or H 2 O.  more » « less
Award ID(s):
1664977 1828764
NSF-PAR ID:
10156790
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Dalton Transactions
ISSN:
1477-9226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reactions of the bicompartmental bis(phenolato) compound 6,6′-methylenebis(2-((bis(pyridin-2-ylmethyl)amino)methyl)-4-chlorophenol)hemihydrate (H 2 L ½H 2 O) with 3d metal( ii ) ions afforded novel fully structurally characterized bridged acetato dinuclear complexes [Mn 2 (HL)(μ 1,2 -OAc) 2 ]PF 6 (1) [Zn 2 (HL)(μ 1,2 -OAc)(H 2 O) 0.75 (MeOH) 0.25 ](PF 6 ) 2 ·0.45(H 2 O) (5) and [Cd 2 (HL)(μ 1,1,2 -OAc)(OAc)(H 2 O)]PF 6 ·H 2 O (6) as well as the polymeric bridged-azido tetranuclear catena -[Cu 4 (HL) 2 (μ 1,1 -N 3 ) 2 (μ 1,3 -N 3 ) 2 ](NO 3 ) 2 ·5H 2 O (4). The complex [Cu 4 (HL) 2 (ClO 4 ) 3 (H 2 O) 5 ](ClO 4 ) 3 ·5H 2 O (2) was partially characterized. In addition, three more dinuclear complexes [Cu 2 (H 2 L)(NO 3 ) 2 (H 2 O) 2 ](NO 3 ) 2 (3), [Cu 2 (HL)(OAc)(CH 3 OH)](PF 6 ) 2 (7) and [Cu 2 (HL)(NCS) 2 ]NO 3 ·2H 2 O (8) were also isolated. All complexes were characterized by CHN elemental analysis, IR and UV-Vis spectroscopy, ESI-MS, conductivity measurements and X-ray single crystal crystallography for compounds 1, 4, 5 and 6, where the bis(phenolato) ligand displayed different deprotonation (H 2 L, HL − and L 2− ). The magnetic susceptibility measurements over the temperature range 2–300 K revealed very weak antiferromagnetic coupling in dimanganese( ii ) 1 ( J = −1.64(1) cm −1 ) and almost negligible magnetic interaction in dicopper( ii ) 2 ( J = 0(3) cm −1 ). In the azido catena -[Cu 4 (HL) 2 (μ 1,1 -N 3 ) 2 (μ 1,3 -N 3 ) 2 ](NO 3 ) 2 ·5H 2 O (4) complex, the J value of −133(3) cm −1 was obtained upon moderate-to-strong antiferromagnetic coupling through the di-μ 1,3 -N 3 -bridged dicopper( ii ) unit with no magnetic interaction between the two copper( ii ) ions in the di-μ 1,1 -N 3 -bridged unit. 
    more » « less
  2. Abstract

    The syntheses of the 2,9‐dimesityl‐1,10‐phenanthroline (dmesp) metal complexes, [Cu(dmesp)(MeCN)]PF6(1), [Cu(dmesp)2]PF6(2), Fe(dmesp)Cl2(3), Co(dmesp)Cl2(4), Ni(dmesp)Cl2(5), Zn(dmesp)Cl2(6), Pd(dmesp)MeCl (7), Cu(dmesp)Cl (8), and Pd(dmesp)2Cl2(9), in good to high yields are described. These complexes were characterized by1H and13C NMR spectroscopy, HR–MS (ESI and/or APPI), and elemental analysis (CHN). The solid‐state structures of complexes18were determined by single‐crystal X‐ray analysis and their photophysical properties were also characterized. To demonstrate the versatility of this new platform, complexes35,8, and9were employed in the catalytic oligomerization of ethylene using modified methyl aluminoxane (MMAO) as the cocatalyst, where Co(II) and Ni(II) complexes (4and5, respectively) were found to exhibit moderate selectivity for catalytic dimerization of ethylene to butenes over tri‐ or tetramerization. Complex8is an effective catalyst of both the commonly encountered “click” reaction and amine arylation chemistries. Complexes6and9were found to be excellent catalysts for Friedel‐Crafts alkylation and Suzuki‐Miyaura coupling, respectively.

     
    more » « less
  3. Herein we report an experimental and computational study of a family of four coordinated 14-electron complexes of Rh( iii ) devoid of agostic interactions. The complexes [X–Rh(κ 3 ( P,Si,Si )PhP( o -C 6 H 4 CH 2 Si i Pr 2 ) 2 ], where X = Cl (Rh-1), Br (Rh-2), I (Rh-3), OTf (Rh-4), Cl·GaCl 3 (Rh-5); derive from a bis(silyl)- o -tolylphosphine with isopropyl substituents on the Si atoms. All five complexes display a sawhorse geometry around Rh and exhibit similar spectroscopic and structural properties. The catalytic activity of these complexes and [Cl–Ir(κ 3 ( P,Si,Si )PhP( o -C 6 H 4 CH 2 Si i Pr 2 ) 2 ], Ir-1, in styrene and aliphatic alkene functionalizations with hydrosilanes is disclosed. We show that Rh-1 catalyzes effectively the dehydrogenative silylation of styrene with Et 3 SiH in toluene while it leads to hydrosilylation products in acetonitrile. Rh-1 is an excellent catalyst in the sequential isomerization/hydrosilylation of terminal and remote aliphatic alkenes with Et 3 SiH including hexene isomers, leading efficiently and selectively to the terminal anti-Markonikov hydrosilylation product in all cases. With aliphatic alkenes, no hydrogenation products are observed. Conversely, catalysis of the same hexene isomers by Ir-1 renders allyl silanes, the tandem isomerization/dehydrogenative silylation products. A mechanistic proposal is made to explain the catalysis with these M( iii ) complexes. 
    more » « less
  4. A series of Ag( i ) and Cu( i ) complexes [Ag 3 (L 1 ) 2 ][PF 6 ] 3 ( 8 ), [Ag 3 (L 2 ) 2 ][PF 6 ] 3 ( 9 ), [Cu(L 1 )][PF 6 ] ( 10 ) and [Cu(L 2 )][PF 6 ] ( 11 ) have been synthesized by reactions of the tridentate amine-bis(N-heterocyclic carbene) ligand precursors [H 2 L 1 ][PF 6 ] 2 ( 6 ) and [H 2 L 2 ][PF 6 ] 2 ( 7 ) with Ag 2 O and Cu 2 O, respectively. Complexes 10 and 11 can also be obtained by transmetalation of 8 and 9 , respectively, with 3.0 equiv. of CuCl. A heterometallic Cu/Ag–NHC complex [Cu 2 Ag(L 1 ) 2 (CH 3 CN) 2 ][PF 6 ] 3 ( 12 ) is formed by the reaction of 8 with 2.0 equiv. of CuCl. All complexes have been characterized by NMR, electrospray ionization mass spectrometry (ESI-MS), and single-crystal X-ray diffraction studies. The luminescence properties of 10–12 in solution and the solid state have been studied. At room temperature, 10–12 exhibit evident luminescence in solution and the solid state. The emission wavelengths are found to be identical at 483 nm in CH 3 CN, but they are 484, 480 and 592 nm in the solid state for 10–12 , respectively. These results suggest that 12 dissociates into two molecules of 10 and Ag( i ) ions in solution. Complex 12 is the first luminescent heterometallic Cu/Ag–NHC complex. 
    more » « less
  5. Abstract

    A new series of mono‐ and bis‐alkynyl CoIII(TIM) complexes (TIM=2,3,9,10‐tetramethyl‐1,4,8,11‐tetraazacyclotetradeca‐1,3,8,10‐tetraene) is reported herein. Thetrans‐[Co(TIM)(C2R)Cl]+complexes were prepared from the reaction betweentrans‐[Co(TIM)Cl2]PF6and HC2R (R=tri(isopropyl)silyl or TIPS (1), ‐C6H4‐4‐tBu (2), ‐C6H4‐4‐NO2(3 a), andN‐mesityl‐1,8‐naphthalimide or NAPMes(4 a)) in the presence of Et3N. The intermediate complexes of the typetrans‐[Co(TIM)(C2R)(NCMe)](PF6)(OTf),3 band4 b, were obtained by treating3 aand4 a, respectively, with AgOTf in CH3CN. Furthermore, bis‐alkynyltrans‐[Co(TIM)(C2R)2]PF6complexes,3 cand4 c, were generated following a second dehydrohalogenation reaction between3 band4 b, respectively, and the appropriate HC2R in the presence of Et3N. These new complexes have been characterized using X‐ray diffraction (2,3 a,4 a, and4 c), IR,1H NMR, UV/Vis spectroscopy, fluorescent spectroscopy (4 c), and cyclic voltammetry.

     
    more » « less