skip to main content


Title: Semi-Inclusive Deep Inelastic Scattering in Wandzura-Wilczek-type approximation
We present the complete cross-section for the production of unpolarized hadrons in semi-inclusive deep-inelastic scattering up to power-suppressed O(1/Q^2) terms in the Wandzura-Wilczek-type approximation, which consists in systematically assuming that qgqbar-terms are much smaller than qqbar -correlators. We compute all twist-2 and twist-3 structure functions and the corresponding asymmetries, and discuss the applicability of the Wandzura-Wilczek-type approximations on the basis of available data. We make predictions that can be tested by data from COMPASS, HERMES, Jefferson Lab, and the future Electron-Ion Collider. The results of this paper can be readily used for phenomenology and for event generators, and will help to improve the description of semi-inclusive deep-inelastic processes in terms of transverse momentum dependent parton distribution functions and fragmentation functions beyond the leading twist.  more » « less
Award ID(s):
1812423
NSF-PAR ID:
10104062
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The journal of high energy physics
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We explore the complete cross-section for the production of unpolarized hadrons in semi-inclusive deep-inelastic scattering up to power-suppressed O(1/Q2) terms in the Wandzura-Wilczek-type (WW-type) approximation, which consists in systematically assuming that q¯gq-correlators are much smaller than q¯q-correlators. Under the applicability of WW-type approximations, certain relations among transverse momentum dependent parton distribution functions (TMDs) and fragmentation functions (FFs) occur which are used to approximate SIDIS cross-section in terms of a smaller subset of TMDs and FFs. We discuss the applicability of the WW-type approximations on the basis of available data. 
    more » « less
  2. A bstract Understanding how sea quarks behave inside a nucleon is one of the most important physics goals of the proposed Electron-Ion Collider in China (EicC), which is designed to have a 3.5 GeV polarized electron beam (80% polarization) colliding with a 20 GeV polarized proton beam (70% polarization) at instantaneous luminosity of 2 × 10 33 cm − 2 s − 1 . A specific topic at EicC is to understand the polarization of individual quarks inside a longitudinally polarized nucleon. The potential of various future EicC data, including the inclusive and semi-inclusive deep inelastic scattering data from both doubly polarized electron-proton and electron- 3 He collisions, to reduce the uncertainties of parton helicity distributions is explored at the next-to-leading order in QCD, using the Error PDF Updating Method Package ( e P ump ) which is based on the Hessian profiling method. We show that the semi-inclusive data are well able to provide good separation between flavour distributions, and to constrain their uncertainties in the x > 0 . 005 region, especially when electron- 3 He collisions, acting as effective electron-neutron collisions, are taken into account. To enable this study, we have generated a Hessian representation of the DSSV14 set of PDF replicas, named DSSV14H PDFs. 
    more » « less
  3. null (Ed.)
    A bstract We perform a global fit of the available polarized Semi-Inclusive Deep Inelastic Scattering (SIDIS), polarized pion-induced Drell-Yan (DY) and W ± /Z boson production data at N 3 LO and NNLO accuracy of the Transverse Momentum Dependent (TMD) evolution, and extract the Sivers function for u , d , s and for sea quarks. The Qiu-Sterman function is determined in a model independent way via the operator product expansion from the extracted Sivers function. The analysis is supplemented by additional studies, such as the estimation of applicability region, the impact of the unpolarized distributions’ uncertainties, the universality of the Sivers functions, positivity constraints, the significance of the sign-change relation, and the comparison with the existing extractions. 
    more » « less
  4. Single transverse-spin asymmetries (SSAs) give great insight into the 3-dimensional structure of hadrons. We report on the first global QCD analysis of SSAs in semi-inclusive deep-inelastic scattering, electron-positron annihilation, Drell-Yan, and single-inclusive proton-proton collisions. One byproduct of the analysis is an extraction of the transversity function, from which the nucleon tensor charges can be computed, and we find, for the first time, agreement with lattice QCD for these quantities. Based on this analysis, we perform an impact study of future data on extractions of the nucleon tensor charges. 
    more » « less
  5. null (Ed.)
    A bstract A comprehensive set of azimuthal single-spin and double-spin asymmetries in semi-inclusive leptoproduction of pions, charged kaons, protons, and antiprotons from transversely polarized protons is presented. These asymmetries include the previously published HERMES results on Collins and Sivers asymmetries, the analysis of which has been extended to include protons and antiprotons and also to an extraction in a three-dimensional kinematic binning and enlarged phase space. They are complemented by corresponding results for the remaining four single-spin and four double-spin asymmetries allowed in the one-photon-exchange approximation of the semi-inclusive deep-inelastic scattering process for target-polarization orientation perpendicular to the direction of the incoming lepton beam. Among those results, significant non-vanishing cos ( ϕ−ϕ S ) modulations provide evidence for a sizable worm-gear (II) distribution, $$ {g}_{1\mathrm{T}}^q\left(x,{\mathrm{p}}_T^2\right) $$ g 1 T q x p T 2 . Most of the other modulations are found to be consistent with zero with the notable exception of large sin ( ϕ S ) modulations for charged pions and K + . 
    more » « less