skip to main content


Search for: All records

Award ID contains: 1812423

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    A bstract The Drell-Yan process provides important information on the internal struc- ture of hadrons including transverse momentum dependent parton distribution functions (TMDs). In this work we present calculations for all leading twist structure functions de- scribing the pion induced Drell-Yan process. The non-perturbative input for the TMDs is taken from the light-front constituent quark model, the spectator model, and available parametrizations of TMDs extracted from the experimental data. TMD evolution is im- plemented at Next-to-Leading Logarithmic precision for the first time for all asymmetries. Our results are compatible with the first experimental information, help to interpret the data from ongoing experiments, and will allow one to quantitatively assess the models in future when more precise data will become available. 
    more » « less
  2. null (Ed.)
  3. Selected topics related to the physics of the energy-momentum tensor (EMT) form factors are discussed. The topics are: 1) Fundamental mechanical properties of particles and gravity 2) Mechanical properties of non-spherical particles 3) Gravitational form factors of Goldstone bosons 4) Nucleon's seismology? 
    more » « less
  4. We explore the complete cross-section for the production of unpolarized hadrons in semi-inclusive deep-inelastic scattering up to power-suppressed O(1/Q2) terms in the Wandzura-Wilczek-type (WW-type) approximation, which consists in systematically assuming that q¯gq-correlators are much smaller than q¯q-correlators. Under the applicability of WW-type approximations, certain relations among transverse momentum dependent parton distribution functions (TMDs) and fragmentation functions (FFs) occur which are used to approximate SIDIS cross-section in terms of a smaller subset of TMDs and FFs. We discuss the applicability of the WW-type approximations on the basis of available data. 
    more » « less
  5. The form factors of the energy-momentum tensor can be accessed via studies of generalized parton distributions in hard exclusive reactions. In this talk we present recent results on the energy-momentum tensor form factors and densities in the bag model formulated in the large-Nc limit. The simplicity and lucidity of this quark model allow us to investigate many general concepts which have recently attracted interest, including pressure, shear forces and angular momentum density inside the nucleon. The results from the bag model are theoretically consistent, and comply with all general requirements. 
    more » « less
  6. We present the complete cross-section for the production of unpolarized hadrons in semi-inclusive deep-inelastic scattering up to power-suppressed O(1/Q^2) terms in the Wandzura-Wilczek-type approximation, which consists in systematically assuming that qgqbar-terms are much smaller than qqbar -correlators. We compute all twist-2 and twist-3 structure functions and the corresponding asymmetries, and discuss the applicability of the Wandzura-Wilczek-type approximations on the basis of available data. We make predictions that can be tested by data from COMPASS, HERMES, Jefferson Lab, and the future Electron-Ion Collider. The results of this paper can be readily used for phenomenology and for event generators, and will help to improve the description of semi-inclusive deep-inelastic processes in terms of transverse momentum dependent parton distribution functions and fragmentation functions beyond the leading twist. 
    more » « less