skip to main content


Title: Engineering opposite electronic polarization of singlet and triplet states increases the yield of high-energy photoproducts
Efficient photosynthetic energy conversion requires quantitative, light-driven formation of high-energy, charge-separated states. However, energies of high-lying excited states are rarely extracted, in part because the congested density of states in the excited-state manifold leads to rapid deactivation. Conventional photosystem designs promote electron transfer (ET) by polarizing excited donor electron density toward the acceptor (“one-way” ET), a form of positive design. Curiously, negative design strategies that explicitly avoid unwanted side reactions have been underexplored. We report here that electronic polarization of a molecular chromophore can be used as both a positive and negative design element in a light-driven reaction. Intriguingly, prudent engineering of polarized excited states can steer a “U-turn” ET—where the excited electron density of the donor is initially pushed away from the acceptor—to outcompete a conventional one-way ET scheme. We directly compare one-way vs. U-turn ET strategies via a linked donor–acceptor (DA) assembly in which selective optical excitation produces donor excited states polarized either toward or away from the acceptor. Ultrafast spectroscopy of DA pinpoints the importance of realizing donor singlet and triplet excited states that have opposite electronic polarizations to shut down intersystem crossing. These results demonstrate that oppositely polarized electronically excited states can be employed to steer photoexcited states toward useful, high-energy products by routing these excited states away from states that are photosynthetic dead ends.  more » « less
Award ID(s):
1709497
NSF-PAR ID:
10104082
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
ISSN:
0027-8424
Page Range / eLocation ID:
201901752
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    BF2‐chelated dipyrromethene, BODIPY, was functionalized to carry two styryl crown ether tails and a secondary electron donor at themesoposition. By using a “two‐point” self‐assembly strategy, a bis‐alkylammonium‐functionalized fullerene (C60) was allowed to self‐assemble the crown ether voids of BODIPY to obtain multimodular donor–acceptor conjugates. As a consequence of the two‐point binding, the 1:1 stoichiometric complexes formed yielded complexes of higher stability in which fluorescence of BODIPY was found to be quenched; this suggested the occurrence of excited‐state processes. The geometry and electronic structure of the self‐assembled complexes were derived from B3LYP/3‐21G(*) methods in which no steric constraints between the entities was observed. An energy‐level diagram was established by using spectral, electrochemical, and computational results to help understand the mechanistic details of excited‐state processes originating from1bis‐styryl‐BODIPY*. Femtosecond transient absorbance studies were indicative of the formation of an exciplex state prior to the charge‐separation process to yield a bis‐styryl‐BODIPY.+–C60.radical ion pair. The time constants for charge separation were generally lower than charge‐recombination processes. The present studies bring out the importance of multimode binding strategies to obtain stable self‐assembled donor–acceptor conjugates capable of undergoing photoinduced charge separation needed in artificial photosynthetic applications.

     
    more » « less
  2. null (Ed.)
    Efficient nanomaterials for artificial photosynthesis require fast and robust unidirectional electron transfer (ET) from photosensitizers through charge-separation and accumulation units to redox-active catalytic sites. We explored the ultrafast time-scale limits of photo-induced charge transfer between a Ru(II)tris(bipyridine) derivative photosensitizer and PpcA, a 3-heme c-type cytochrome serving as a nanoscale biological wire. Four covalent attachment sites (K28C, K29C, K52C, and G53C) were engineered in PpcA enabling site-specific covalent labeling with expected donor-acceptor (DA) distances of 4–8 Å. X-ray scattering results demonstrated that mutations and chemical labeling did not disrupt the structure of the proteins. Time-resolved spectroscopy revealed three orders of magnitude difference in charge transfer rates for the systems with otherwise similar DA distances and the same number of covalent bonds separating donors and acceptors. All-atom molecular dynamics simulations provided additional insight into the structure-function requirements for ultrafast charge transfer and the requirement of van der Waals contact between aromatic atoms of photosensitizers and hemes in order to observe sub-nanosecond ET. This work demonstrates opportunities to utilize multi-heme c-cytochromes as frameworks for designing ultrafast light-driven ET into charge-accumulating biohybrid model systems, and ultimately for mimicking the photosynthetic paradigm of efficiently coupling ultrafast, light-driven electron transfer chemistry to multi-step catalysis within small, experimentally versatile photosynthetic biohybrid assemblies. 
    more » « less
  3. Intermediate donor–acceptor electronic coupling leads to a brilliant fluorescence behaviour.

    Charge transfer (CT) is key for molecular photonics, governing the optical properties of chromophores comprising electron-rich and electron-deficient components. In photoexcited dyes with an acceptor– donor–acceptor or donor–acceptor–donor architecture, CT breaks their quadrupolar symmetry and yields dipolar structures manifesting pronounced solvatochromism. Herein, we explore the effects of electronic coupling through biaryl linkers on the excited-state symmetry breaking of such hybrid dyes composed of an electron-rich core, i.e., 1,4-dihydropyrrolo[3,2-b]pyrrole (DHPP), and pyrene substituents that can act as electron acceptors. Experimental and theoretical studies reveal that strengthening the donor–acceptor electronic coupling decreases the CT rates and the propensity for symmetry breaking. We ascribe this unexpected result to effects of electronic coupling on the CT thermodynamics, which in its turn affects the CT kinetics. In cases of intermediate electronic coupling, the pyrene-DHPP conjugates produce fluorescence spectra, spreading over the whole visible range, that in addition to the broad CT emission, show bands from the radiative deactivation of the locally excited states of the donor and the acceptors. Because the radiative deactivation of the low-lying CT states is distinctly slow, fluorescence from upper locally excited states emerge leading to the observed anti- Kasha behaviour. As a result, these dyes exhibit white fluorescence. In addition to demonstrating the multifaceted nature of the effects of electronic coupling on CT dynamics, these chromophores can act as broad-band light sources with practical importance for imaging and photonics. 
    more » « less
  4. Electron transfer (ET) in donor–bridge–acceptor (DBA) compounds depends strongly on the structural and electronic properties of the bridge. Among the bridges that support donor–acceptor conjugation, alkyne bridges have attractive and unique properties: they are compact, possess linear structure permitting access to high symmetry DBA molecules, and allow torsional motion of D and A, especially for longer bridges. We report conformation dependent electron transfer dynamics in a set of novel DBA compounds featuring butadiyne (C4) bridge, N -isopropyl-1,8-napthalimide (NAP) acceptors, and donors that span a range of reduction potentials (trimethyl silane (Si-C4-NAP), phenyl (Ph-C4-NAP), and dimethyl aniline (D-C4-NAP)). Transient mid-IR absorption spectra of the CC bridge stretching modes, transient spectra in the visible range, and TD-DFT calculations were used to decipher the ET mechanisms. We found that the electronic excited state energies and, especially, the transition dipoles (S 0 → S n ) depend strongly on the dihedral angle ( θ ) between D and A and the frontier orbital symmetry, offering an opportunity to photo-select particular excited states with specific ranges of dihedral angles by exciting at chosen wavelengths. For example, excitation of D-C4-NAP at 400 nm predominantly prepares an S 1 excited state in the planar conformations ( θ ∼ 0) but selects an S 2 state with θ ∼ 90°, indicating the dominant role of the molecular symmetry in the photophysics. Moreover, the symmetry of the frontier orbitals of such DBA compounds not only defines the photo-selection outcome, but also determines the rate of the S 2 → S 1 charge separation reaction. Unprecedented variation of the S 2 –S 1 electronic coupling with θ by over four orders of magnitude results in slow ET at θ ca. 0° and 90° but extremely fast ET at θ of 20–60°. The unique features of high-symmetry alkyne bridged DBA structures enable frequency dependent ET rate selection and make this family of compounds promising targets for the vibrational excitation control of ET kinetics. 
    more » « less
  5. Abstract

    Two wide‐band‐capturing donor‐acceptor conjugates featuring bis‐styrylBODIPY and perylenediimide (PDI) have been newly synthesized, and the occurrence of ultrafast excitation transfer from the1PDI* to BODIPY, and a subsequent electron transfer from the1BODIPY* to PDI have been demonstrated. Optical absorption studies revealed panchromatic light capture but offered no evidence of ground‐state interactions between the donor and acceptor entities. Steady‐state fluorescence and excitation spectral recordings provided evidence of singlet‐singlet energy transfer in these dyads, and quenched fluorescence of bis‐styrylBODIPY emission in the dyads suggested additional photo‐events. The facile oxidation of bis‐styrylBODIPY and facile reduction of PDI, establishing their relative roles of electron donor and acceptor, were borne out by electrochemical studies. The electrostatic potential surfaces of the S1and S2states, derived from time‐dependent DFT calculations, supported excited charge transfer in these dyads. Spectro‐electrochemical studies on one‐electron‐oxidized and one‐electron‐reduced dyads and the monomeric precursor compounds were also performed in a thin‐layer optical cell under corresponding applied potentials. From this study, both bis‐styrylBODIPY⋅+and PDI⋅could be spectrally characterizes and were subsequently used in characterizing the electron‐transfer products. Finally, pump–probe spectral studies were performed in dichlorobenzene under selective PDI and bis‐styrylBODIPY excitation to secure energy and electron‐transfer evidence. The measured rate constants for energy transfer,kENT, were in the range of 1011 s−1, while the electron transfer rate constants,kET, were in the range of 1010 s−1, thus highlighting their potential use in solar energy harvesting and optoelectronic applications.

     
    more » « less