- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Award ID(s):
- 1759959
- Publication Date:
- NSF-PAR ID:
- 10104109
- Journal Name:
- Research Ideas and Outcomes
- Volume:
- 4
- ISSN:
- 2367-7163
- Sponsoring Org:
- National Science Foundation
More Like this
-
Reed, Daniel A. ; Lifka, David ; Swanson, David ; Amaro, Rommie ; Wilkins-Diehr, Nancy (Ed.)This report summarizes the discussions from a workshop convened at NSF on May 30-31, 2018 in Alexandria, VA. The overarching objective of the workshop was to rethink the nature and composition of the NSF-supported computational ecosystem given changing application requirements and resources and technology landscapes. The workshop included roughly 50 participants, drawn from high-performance computing (HPC) centers, campus computing facilities, cloud service providers (academic and commercial), and distributed resource providers. Participants spanned both large research institutions and smaller universities. Organized by Daniel Reed (University of Utah, chair), David Lifka (Cornell University), David Swanson (University of Nebraska), Rommie Amaro (UCSD), and Nancy Wilkins-Diehr (UCSD/SDSC), the workshop was motivated by the following observations. First, there have been dramatic changes in the number and nature of applications using NSF-funded resources, as well as their resource needs. As a result, there are new demands on the type (e.g., data centric) and location (e.g., close to the data or the users) of the resources as well as new usage modes (e.g., on-demand and elastic). Second, there have been dramatic changes in the landscape of technologies, resources, and delivery mechanisms, spanning large scientific instruments, ubiquitous sensors, and cloud services, among others.
-
Unoccupied Aerial Vehicles (UAVs), or drone technologies, with their high spatial resolution, temporal flexibility, and ability to repeat photogrammetry, afford a significant advancement in other remote sensing approaches for coastal mapping, habitat monitoring, and environmental management. However, geographical drone mapping and in situ fieldwork often come with a steep learning curve requiring a background in drone operations, Geographic Information Systems (GIS), remote sensing and related analytical techniques. Such a learning curve can be an obstacle for field implementation for researchers, community organizations and citizen scientists wishing to include introductory drone operations into their work. In this study, we develop a comprehensive drone training program for research partners and community members to use cost-effective, consumer-quality drones to engage in introductory drone mapping of coastal seagrass monitoring sites along the west coast of North America. As a first step toward a longer-term Public Participation GIS process in the study area, the training program includes lessons for beginner drone users related to flying drones, autonomous route planning and mapping, field safety, GIS analysis, image correction and processing, and Federal Aviation Administration (FAA) certification and regulations. Training our research partners and students, who are in most cases novice users, is the first step inmore »
-
Abstract Background Personal privacy is a significant concern in the era of big data. In the field of health geography, personal health data are collected with geographic location information which may increase disclosure risk and threaten personal geoprivacy. Geomasking is used to protect individuals’ geoprivacy by masking the geographic location information, and spatial k-anonymity is widely used to measure the disclosure risk after geomasking is applied. With the emergence of individual GPS trajectory datasets that contains large volumes of confidential geospatial information, disclosure risk can no longer be comprehensively assessed by the spatial k-anonymity method. Methods This study proposes and develops daily activity locations (DAL) k-anonymity as a new method for evaluating the disclosure risk of GPS data. Instead of calculating disclosure risk based on only one geographic location (e.g., home) of an individual, the new DAL k-anonymity is a composite evaluation of disclosure risk based on all activity locations of an individual and the time he/she spends at each location abstracted from GPS datasets. With a simulated individual GPS dataset, we present case studies of applying DAL k-anonymity in various scenarios to investigate its performance. The results of applying DAL k-anonymity are also compared with those obtained with spatialmore »
-
Use of geospatial technology in higher education facilitates student engagement, promotes deeper understanding of material, and supports inquiry-based learning. However, technology must be applied strategically to generate optimal results. While use of web-based interactive modules and short video are constructive in curriculum, it is beneficial to combine this with exposure to hands-on, experimental, field-based technologies. Experiential learning with technology in the physical environment allows students to understand both the challenges and achievements of scientific investigation. This creates a more comprehensive understanding of science as an iterative process of experimentation and investigation and enrichens course material. This paper explores the uniquely advantageous opportunity Geography educators have to combine classroom-based technology with field-based educational experiences. Classroom use of Geographic Information Systems (GIS) and Remotely Sensed data is increasingly accessible with abundant free educational resources. In addition, field-based use of technology can promote location awareness and spatial critical thinking with the use of GPS-based activities. GPS-based educational units also highlight the growing field of citizen science and can be designed as service-based learning opportunities. Use of highly affordable micro unmanned aerial vehicles (UAV) demonstrates data collection procedures. In addition, exposure to Surveying techniques and the field of Geomatics highlights real-world applications of geographicmore »
-
Abstract Seeking spatiotemporal patterns about how citizens interact with the urban space is critical for understanding how cities function. Such interactions were studied in various forms focusing on patterns of people’s presence, action, and transition in the urban environment, which are defined as human-urban interactions in this paper. Using human activity datasets that utilize mobile positioning technology for tracking the locations and movements of individuals, researchers developed stochastic models to uncover preferential return behaviors and recurrent transitional activity structures in human-urban interactions. Ad-hoc heuristics and spatial clustering methods were applied to derive meaningful activity places in those studies. However, the lack of semantic meaning in the recorded locations makes it difficult to examine the details about how people interact with different activity places. In this study, we utilized geographic context-aware Twitter data to investigate the spatiotemporal patterns of people’s interactions with their activity places in different urban settings. To test consistency of our findings, we used geo-located tweets to derive the activity places in Twitter users’ location histories over three major U.S. metropolitan areas: Greater Boston Area, Chicago, and San Diego, where the geographic context of each location was inferred from its closest land use parcel. The results showed striking spatial and temporalmore »