skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Developing an Introductory UAV/Drone Mapping Training Program for Seagrass Monitoring and Research
Unoccupied Aerial Vehicles (UAVs), or drone technologies, with their high spatial resolution, temporal flexibility, and ability to repeat photogrammetry, afford a significant advancement in other remote sensing approaches for coastal mapping, habitat monitoring, and environmental management. However, geographical drone mapping and in situ fieldwork often come with a steep learning curve requiring a background in drone operations, Geographic Information Systems (GIS), remote sensing and related analytical techniques. Such a learning curve can be an obstacle for field implementation for researchers, community organizations and citizen scientists wishing to include introductory drone operations into their work. In this study, we develop a comprehensive drone training program for research partners and community members to use cost-effective, consumer-quality drones to engage in introductory drone mapping of coastal seagrass monitoring sites along the west coast of North America. As a first step toward a longer-term Public Participation GIS process in the study area, the training program includes lessons for beginner drone users related to flying drones, autonomous route planning and mapping, field safety, GIS analysis, image correction and processing, and Federal Aviation Administration (FAA) certification and regulations. Training our research partners and students, who are in most cases novice users, is the first step in a larger process to increase participation in a broader project for seagrass monitoring in our case study. While our training program originated in the United States, we discuss our experiences for research partners and communities around the globe to become more confident in introductory drone operations for basic science. In particular, our work targets novice users without a strong background in geographic research or remote sensing. Such training provides technical guidance on the implementation of a drone mapping program for coastal research, and synthesizes our approaches to provide broad guidance for using drones in support of a developing Public Participation GIS process.  more » « less
Award ID(s):
1829890
PAR ID:
10292234
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Drones
Volume:
4
Issue:
4
ISSN:
2504-446X
Page Range / eLocation ID:
70
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we propose a drone-based wildfire monitoring system for remote and hard-to-reach areas. This system utilizes autonomous unmanned aerial vehicles (UAVs) with the main advantage of providing on-demand monitoring service faster than the current approaches of using satellite images, manned aircraft and remotely controlled drones. Furthermore, using autonomous drones facilitates minimizing human intervention in risky wildfire zones. In particular, to develop a fully autonomous system, we propose a distributed leader-follower coalition formation model to cluster a set of drones into multiple coalitions that collectively cover the designated monitoring field. The coalition leader is a drone that employs observer drones potentially with different sensing and imaging capabilities to hover in circular paths and collect imagery information from the impacted areas. The objectives of the proposed system include: i) to cover the entire fire zone with a minimum number of drones, and ii) to minimize the energy consumption and latency of the available drones to fly to the fire zone. Simulation results confirm that the performance of the proposed system- without the need for inter-coalition communications- approaches that of a centrally-optimized system. 
    more » « less
  2. Human operators of remote and semi-autonomous systems must have a high level of executive function to safely and efficiently conduct operations. These operators face unique cognitive challenges when monitoring and controlling robotic machines, such as vehicles, drones, and construction equipment. The development of safe and experienced human operators of remote machines requires structured training and credentialing programs. This review critically evaluates the potential for incorporating neurotechnology into remote systems operator training and work to enhance human-machine interactions, performance, and safety. Recent evidence demonstrating that different noninvasive neuromodulation and neurofeedback methods can improve critical executive functions such as attention, learning, memory, and cognitive control is reviewed. We further describe how these approaches can be used to improve training outcomes, as well as teleoperator vigilance and decision-making. We also describe how neuromodulation can help remote operators during complex or high-risk tasks by mitigating impulsive decision-making and cognitive errors. While our review advocates for incorporating neurotechnology into remote operator training programs, continued research is required to evaluate the how these approaches will impact industrial safety and workforce readiness. 
    more » « less
  3. Aerial drones are becoming an integral part of application domains including but not limited to, military operations, package delivery, construction, monitoring and search/rescue operations. It is critical to ensure the cyber security of networked aerial drone systems in these applications. Standard cryptographic services can be deployed to provide basic security services; however, they have been shown to be inefficient in terms of energy and time consumption, especially for small aerial drones with resource-limited processors. Therefore, there is a significant need for an efficient cryptographic framework that can meet the requirements of small aerial drones. We propose an improved cryptographic framework for small aerial drones, which offers significant energy efficiency and speed advantages over standard cryptographic techniques. (i) We create (to the best of our knowledge) the first optimized public key infrastructure (PKI) based framework for small aerial drones, which provides energy efficient techniques by harnessing special precomputation methods and optimized elliptic curves. (ii) We also integrate recent light-weight symmetric primitives into our PKI techniques to provide a full-fledged cryptographic framework. (iii) We implemented standard counterparts and our proposed techniques on an actual small aerial drone (Crazyflie 2.0), and provided an in-depth energy analysis. Our experiments showed that our improved cryptographic framework achieves up to 35× lower energy consumption than its standard counterpart. 
    more » « less
  4. An emerging arena of archaeological research is beginning to deploy remote sensing technologies—including aerial and satellite imagery, digital topographic data, and drone-acquired and terrestrial geophysical data—not only in support of conventional fieldwork but also as an independent means of exploring the archaeological landscape. This article provides a critical review of recent research that relies on an ever-growing arsenal of imagery and instruments to undertake innovative investigations: mapping regional-scale settlement histories, documenting ancient land use practices, revealing the complexity of settled spaces, building nuanced pictures of environmental contexts, and monitoring at-risk cultural heritage. At the same time, the disruptive nature of these technologies is generating complex new challenges and controversies surrounding data access and preservation, approaches to a deluge of information, and issues of ethical remote sensing. As we navigate these challenges, remote sensing technologies nonetheless offer revolutionary ways of interrogating the archaeological record and transformative insights into the human past. 
    more » « less
  5. Abstract Pinniped species undergo uniquely amphibious life histories that make them valuable subjects for many domains of research. Pinniped research has often progressed hand‐in‐hand with technological frontiers of wildlife biology, and drones represent a leap forward for methods of aerial remote sensing, enabling data collection, and integration at new scales of biological importance. Drone methods and data types provide four key opportunities for wildlife surveillance that are already advancing pinniped research and management: 1) repeat and on‐demand surveillance, 2) high‐resolution coverage at large extents, 3) morphometric photogrammetry, and 4) computer vision and deep learning applications. Drone methods for pinniped research represent early stages of technological adoption and can reshape the field as they scale towards the full potential of their techniques. 
    more » « less