One of the key factors in simulating realistic wall-bounded flows at high Reynolds numbers is the selection of an appropriate turbulence model for the steady Reynolds Averaged Navier–Stokes equations (RANS) equations. In this investigation, the performance of several turbulence models was explored for the simulation of steady, compressible, turbulent flow on complex geometries (concave and convex surface curvatures) and unstructured grids. The turbulence models considered were the Spalart–Allmaras model, the Wilcox k- ω model and the Menter shear stress transport (SST) model. The FLITE3D flow solver was employed, which utilizes a stabilized finite volume method with discontinuity capturing. A numericalmore »
Computational fluid dynamics-based modeling of liquefied soils
The residual shear strength of liquefied soil is a key parameter in evaluating liquefaction flow failures. Results from a series of dynamic centrifuge experiments where the shear strength of liquefied soil was inferred by measuring the force required to pull a thin metal plate (coupon) horizontally through the liquefied soil are assessed here using a computational fluid dynamics (CFD) based model. Viscosity is a key parameter for the Newtonian fluid constitutive model used in the simulations, and apparent viscosities of liquefied soil in the range of about 5,800 – 13,300 Pa·s were obtained when the CFD model was calibrated against coupons pulled through liquefied soil in dynamic centrifuge tests. These computational values agree reasonably with apparent viscosities of liquefied soil reported in the literature when the Reynold’s numbers exceeded 1.0. Importantly, the CFD simulations illustrated that in cases where Reynold’s numbers are < 1.0, apparent viscosities of liquefied soil back-calculated using simplistic closed-form solutions commonly applied in geotechnical literature are several orders of magnitude too large; and therefore, such closed-form solutions should not be used for these cases.
- Award ID(s):
- 1728172
- Publication Date:
- NSF-PAR ID:
- 10104124
- Journal Name:
- 7th International Conference on Earthquake Geotechnical Engineering
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Calibration and validation of constitutive models and numerical modeling techniques used in analysis of soil liquefaction and its effects are often based on extensive comparisons with the results of element tests and centrifuge experiments. While good quality experimental data are available to understand and quantify the stress-strain-strength response of liquefiable soils in monotonic and cyclic drained/undrained element (triaxial and direct simple shear) tests, the results of these experiments are often less repeatable when the soil approaches liquefaction state and relatively large deviatoric strains suddenly develop within a few cycles of loading. The main source of these less repeatable patterns ofmore »
-
Nonlinear rheology of entangled wormlike micellar solutions predicted by a micelle-slip-spring modelWe examine linear and nonlinear shear and extensional rheological properties using a “micelle-slip-spring model” [T. Sato et al., J. Rheol. 64, 1045–1061 (2020)] that incorporates breakage and rejoining events into the slip-spring model originally developed by Likhtman [Macromolecules 38, 6128–6139 (2005)] for unbreakable polymers. We here employ the Fraenkel potential for main chain springs and slip-springs to address the effect of finite extensibility. Moreover, to improve extensional properties under a strong extensional flow, stress-induced micelle breakage (SIMB) is incorporated into the micelle-slip-spring model. Thus, this model is the first model that includes the entanglement constraint, Rouse modes, finite extensibility, breakagemore »
-
The dynamic stall phenomenon produces adverse aerodynamic loading, which negatively affects the structural strength and life of aerodynamic systems. Aerodynamic shape optimization (ASO) provides a practical approach for delaying and mitigating dynamic stall characteristics without the addition of an auxiliary system. A typical ASO investigation requires multiple evaluations of accurate but time-consuming computational fluid dynamics (CFD) simulations. In the case of dynamic stall, unsteady CFD simulations are required for airfoil shape evaluation; combining it with high-dimensions of airfoil shape parameterization renders the ASO investigation computationally costly. In this study, metamodel-based optimization (MBO) is proposed using the multifidelity modeling (MFM) techniquemore »
-
A fundamental understanding of the flow of polymer solutions through the pore spaces of porous media is relevant and significant to enhanced oil recovery and groundwater remediation. We present in this work an experimental study of the fluid rheological effects on non-Newtonian flows in a simple laboratory model of the real-world pores—a rectangular sudden contraction–expansion microchannel. We test four different polymer solutions with varying rheological properties, including xanthan gum (XG), polyvinylpyrrolidone (PVP), polyethylene oxide (PEO), and polyacrylamide (PAA). We compare their flows against that of pure water at the Reynolds ( R e ) and Weissenburg ( W i )more »