skip to main content


Title: Training for Chanel Estimation in Nonlinear Multi-Antenna Transceivers
Recent efforts to obtain high data rates in wireless systems have focused on what can be achieved in systems that have nonlinear or coarsely quantized transceiver architectures. Estimating the channel in such a system is challenging because the nonlinearities distort the channel estimation process. It is therefore of interest to determine how much training is needed to estimate the channel sufficiently well so that the channel estimate can be used during data communication. We provide a way to determine how much training is needed by deriving a lower bound on the achievable rate in a training-based scheme that can be computed and analyzed even when the number of antennas is very large. This lower bound can be tight, especially at high SNR. One conclusion is that the optimal number of training symbols may paradoxically be smaller than the number of transmitters for systems with coarselyquantized transceivers. We show how the training time can be strongly dependent on the number of receivers, and give an example where doubling the number of receivers reduces the training time by about 37 percent.  more » « less
Award ID(s):
1731056
NSF-PAR ID:
10104226
Author(s) / Creator(s):
Date Published:
Journal Name:
Information Theory and Applications
Page Range / eLocation ID:
1-11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Downlink channel estimation in massive MIMO systems is well known to generate a large overhead in frequency division duplex (FDD) mode as the amount of training generally scales with the number of transmit antennas. Using instead an extrapolation of the channel from the measured uplink estimates to the downlink frequency band completely removes this overhead. In this paper, we investigate the theoretical limits of channel extrapolation in frequency. We highlight the advantage of basing the extrapolation on high-resolution channel estimation. A lower bound (LB) on the mean squared error (MSE) of the extrapolated channel is derived. A simplified LB is also proposed, giving physical intuition on the SNR gain and extrapolation range that can be expected in practice. The validity of the simplified LB relies on the assumption that the paths are well separated. The SNR gain then linearly improves with the number of receive antennas while the extrapolation performance penalty quadratically scales with the ratio of the frequency and the training bandwidth. The theoretical LB is numerically evaluated using a 3GPP channel model and we show that the LB can be reached by practical high-resolution parameter extraction algorithms. Our results show that there are strong limitations on the extrapolation range than can be expected in SISO systems while much more promising results can be obtained in the multiple-antenna setting as the paths can be more easily separated in the delay-angle domain. 
    more » « less
  2. Abstract Background

    The topology of metabolic networks is both well-studied and remarkably well-conserved across many species. The regulation of these networks, however, is much more poorly characterized, though it is known to be divergent across organisms—two characteristics that make it difficult to model metabolic networks accurately. While many computational methods have been built to unravel transcriptional regulation, there have been few approaches developed for systems-scale analysis and study of metabolic regulation. Here, we present a stepwise machine learning framework that applies established algorithms to identify regulatory interactions in metabolic systems based on metabolic data: stepwise classification of unknown regulation, or SCOUR.

    Results

    We evaluated our framework on both noiseless and noisy data, using several models of varying sizes and topologies to show that our approach is generalizable. We found that, when testing on data under the most realistic conditions (low sampling frequency and high noise), SCOUR could identify reaction fluxes controlled only by the concentration of a single metabolite (its primary substrate) with high accuracy. The positive predictive value (PPV) for identifying reactions controlled by the concentration of two metabolites ranged from 32 to 88% for noiseless data, 9.2 to 49% for either low sampling frequency/low noise or high sampling frequency/high noise data, and 6.6–27% for low sampling frequency/high noise data, with results typically sufficiently high for lab validation to be a practical endeavor. While the PPVs for reactions controlled by three metabolites were lower, they were still in most cases significantly better than random classification.

    Conclusions

    SCOUR uses a novel approach to synthetically generate the training data needed to identify regulators of reaction fluxes in a given metabolic system, enabling metabolomics and fluxomics data to be leveraged for regulatory structure inference. By identifying and triaging the most likely candidate regulatory interactions, SCOUR can drastically reduce the amount of time needed to identify and experimentally validate metabolic regulatory interactions. As high-throughput experimental methods for testing these interactions are further developed, SCOUR will provide critical impact in the development of predictive metabolic models in new organisms and pathways.

     
    more » « less
  3. One-bit transceivers with strongly nonlinear characteristics are being considered for wireless communication because of their low cost and low power consumption. Although each such transceiver can support only a low data rate, multiple such transceivers can be used to obtain an aggregate high data rate. An important part of many communication systems is the process of channel estimation, which is particularly challenging when the estimation process uses these transceivers. The standard analysis of estimation mean-square error versus training length that is available for linear transceivers does not apply with the nonlinearities inherent in one-bit transceivers. We analyze the training requirements in a large- scale system and show that the optimal number of training symbols strongly depends on the number of receivers, and the optimal number of training symbols can be significantly smaller than the number of transmitters. These results contrast sharply with classical results obtained with linear transceivers. 
    more » « less
  4. Obeid, I. ; Selesnick, I. (Ed.)
    The Neural Engineering Data Consortium at Temple University has been providing key data resources to support the development of deep learning technology for electroencephalography (EEG) applications [1-4] since 2012. We currently have over 1,700 subscribers to our resources and have been providing data, software and documentation from our web site [5] since 2012. In this poster, we introduce additions to our resources that have been developed within the past year to facilitate software development and big data machine learning research. Major resources released in 2019 include: ● Data: The most current release of our open source EEG data is v1.2.0 of TUH EEG and includes the addition of 3,874 sessions and 1,960 patients from mid-2015 through 2016. ● Software: We have recently released a package, PyStream, that demonstrates how to correctly read an EDF file and access samples of the signal. This software demonstrates how to properly decode channels based on their labels and how to implement montages. Most existing open source packages to read EDF files do not directly address the problem of channel labels [6]. ● Documentation: We have released two documents that describe our file formats and data representations: (1) electrodes and channels [6]: describes how to map channel labels to physical locations of the electrodes, and includes a description of every channel label appearing in the corpus; (2) annotation standards [7]: describes our annotation file format and how to decode the data structures used to represent the annotations. Additional significant updates to our resources include: ● NEDC TUH EEG Seizure (v1.6.0): This release includes the expansion of the training dataset from 4,597 files to 4,702. Calibration sequences have been manually annotated and added to our existing documentation. Numerous corrections were made to existing annotations based on user feedback. ● IBM TUSZ Pre-Processed Data (v1.0.0): A preprocessed version of the TUH Seizure Detection Corpus using two methods [8], both of which use an FFT sliding window approach (STFT). In the first method, FFT log magnitudes are used. In the second method, the FFT values are normalized across frequency buckets and correlation coefficients are calculated. The eigenvalues are calculated from this correlation matrix. The eigenvalues and correlation matrix's upper triangle are used to generate feature. ● NEDC TUH EEG Artifact Corpus (v1.0.0): This corpus was developed to support modeling of non-seizure signals for problems such as seizure detection. We have been using the data to build better background models. Five artifact events have been labeled: (1) eye movements (EYEM), (2) chewing (CHEW), (3) shivering (SHIV), (4) electrode pop, electrostatic artifacts, and lead artifacts (ELPP), and (5) muscle artifacts (MUSC). The data is cross-referenced to TUH EEG v1.1.0 so you can match patient numbers, sessions, etc. ● NEDC Eval EEG (v1.3.0): In this release of our standardized scoring software, the False Positive Rate (FPR) definition of the Time-Aligned Event Scoring (TAES) metric has been updated [9]. The standard definition is the number of false positives divided by the number of false positives plus the number of true negatives: #FP / (#FP + #TN). We also recently introduced the ability to download our data from an anonymous rsync server. The rsync command [10] effectively synchronizes both a remote directory and a local directory and copies the selected folder from the server to the desktop. It is available as part of most, if not all, Linux and Mac distributions (unfortunately, there is not an acceptable port of this command for Windows). To use the rsync command to download the content from our website, both a username and password are needed. An automated registration process on our website grants both. An example of a typical rsync command to access our data on our website is: rsync -auxv nedc_tuh_eeg@www.isip.piconepress.com:~/data/tuh_eeg/ Rsync is a more robust option for downloading data. We have also experimented with Google Drive and Dropbox, but these types of technology are not suitable for such large amounts of data. All of the resources described in this poster are open source and freely available at https://www.isip.piconepress.com/projects/tuh_eeg/downloads/. We will demonstrate how to access and utilize these resources during the poster presentation and collect community feedback on the most needed additions to enable significant advances in machine learning performance. 
    more » « less
  5. In this paper, we consider channel estimation problem in the uplink of filter bank multicarrier (FBMC) systems. We propose a pilot structure and a joint multiuser channel estimation method for FBMC. Opposed to the available solutions in the literature, our proposed technique does not rely on the flat-channel condition over each subcarrier band or any requirement for placing guard symbols between different users’ pilots. Our proposed pilot structure reduces the training overhead by interleaving the users’ pilots in time and frequency. Thus, we can accommodate a larger number of training signals within the same bandwidth and improve the spectral efficiency. Furthermore, this pilot structure inherently leads to a reduced peak-to-average power ratio (PAPR) compared with the solutions that use all the subcarriers for training. We analytically derive the Cramér-Rao lower bound (CRLB) and mean square error (MSE) expressions for our proposed method. We show that these expressions are the same. This confirms the optimality of our proposed method, which is numerically evaluated through simulations. Relying on its improved spectral efficiency, our proposed method can serve a large number of users and relax pilot contamination problem in FBMC-based massive MIMO systems. This is corroborated through simulations in terms of sum-rate performance for both single cell and multicell scenarios. 
    more » « less