We present a simple model-free control algorithm that is able to robustly learn and stabilize an unknown discrete time linear system with full control and state feedback subject to arbitrary bounded disturbance and noise sequences. The controller does not require any prior knowledge of the system dynamics, disturbances or noise, yet can guarantee robust stability, uniform asymptotic bounds and uniform worst-case bounds on the state-deviation. Rather than the algorithm itself, we would like to highlight the new approach taken towards robust stability analysis which served as a key enabler in providing the presented stability and performance guarantees. We will conclude with simulation results that show that despite the generality and simplicity, the controller demonstrates good closed-loop performance.
more »
« less
Energetically-optimal Discrete And Continuous Stabilization Of The Rimless Wheel With Torso
In this work, we discuss the modeling, control, and implementation of a rimless wheel with a torso. We derive and compare two control methodologies: a discrete-time controller (DT) that updates the controls once-per-step and a continuous-time controller (CT) that updates gains continuously. For the discrete controller, we use least-squares estimation method to approximate the Poincare ́ map on a certain section and use discrete- linear-quadratic-regulator (DQLR) to stabilize a (closed-form) linearization of this map. For the continuous controller, we introduce moving Poincare ́ sections and stabilize the transverse dynamics along these moving sections. For both controllers, we estimate the region of attraction of the closed-loop system using sum-of-squares methods. Analysis of the impact map yields a refinement of the controller that stabilizes a steady-state walking gait with minimal energy loss. We present both simulation and experimental results that support the validity of the proposed approaches. We find that the CT controller has a larger region of attraction and smoother stabilization as compared with the DT controller.
more »
« less
- Award ID(s):
- 1816925
- PAR ID:
- 10104235
- Date Published:
- Journal Name:
- ASME-International Design Engineering & Technical Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents an observer-based event-triggered boundary control strategy for the one-phase Stefan problem, utilising the position and velocity measurements of the moving interface. The design of the observer and controller is founded on the infinite-dimensional backstepping approach. To implement the continuous-time observer-based controller in an event-triggered framework, we propose a dynamic event triggering condition. This condition specifies the instances when the control input must be updated. Between events, the control input is maintained constant in a Zero-Order-Hold manner. We demonstrate that the dwell-time between successive triggering moments is uniformly bounded from below, thereby precluding Zeno behaviour. The proposed event-triggered boundary control strategy ensures the wellposedness of the closed-loop system and the satisfaction of certain model validity conditions. Additionally, the global exponential convergence of the closed-loop system to the setpoint is established using Lyapunov approach. A simulation example is provided to validate the theoretical findings.more » « less
-
This article introduces a model-based approach for training feedback controllers for an autonomous agent operating in a highly non-linear (albeit deterministic) environment. We desire the trained policy to ensure that the agent satisfies specific task objectives and safety constraints, both expressed in Discrete-Time Signal Temporal Logic (DT-STL). One advantage for reformulation of a task via formal frameworks, like DT-STL, is that it permits quantitative satisfaction semantics. In other words, given a trajectory and a DT-STL formula, we can compute therobustness, which can be interpreted as an approximate signed distance between the trajectory and the set of trajectories satisfying the formula. We utilize feedback control, and we assume a feed forward neural network for learning the feedback controller. We show how this learning problem is similar to training recurrent neural networks (RNNs), where the number of recurrent units is proportional to the temporal horizon of the agent’s task objectives. This poses a challenge: RNNs are susceptible to vanishing and exploding gradients, and naïve gradient descent-based strategies to solve long-horizon task objectives thus suffer from the same problems. To address this challenge, we introduce a novel gradient approximation algorithm based on the idea of dropout or gradient sampling. One of the main contributions is the notion ofcontroller network dropout, where we approximate the NN controller in several timesteps in the task horizon by the control input obtained using the controller in a previous training step. We show that our control synthesis methodology can be quite helpful for stochastic gradient descent to converge with less numerical issues, enabling scalable back-propagation over longer time horizons and trajectories over higher-dimensional state spaces. We demonstrate the efficacy of our approach on various motion planning applications requiring complex spatio-temporal and sequential tasks ranging over thousands of timesteps.more » « less
-
In this paper, we propose a modeling and design technique for a proportional-integral-derivative (PID) controller in the presence of aperiodic intermittent sensor measurements. Using classical control design methods, PID controllers can be designed when measurements are available periodically, at discrete time instances, or continuously. Unfortunately, such design do not apply when measurements are available intermittently. Using the hybrid inclusions framework, we model the continuous-time plant to control, the mechanism triggering intermittent measurements, and a hybrid PID control law defining a hybrid closed-loop system. We provide sufficient conditions for uniform global asymptotic stability using Lyapunov set stability methods. These sufficient conditions are used for the design of the gains of the hybrid PID controller. Also, we propose relaxed sufficient conditions to provide a computationally tractable design method leveraging a polytopic embedding approach. The results are illustrated via numerical examples.more » « less
-
Symbolic planning techniques rely on abstract information about a continuous system to design a discrete planner to satisfy desired high‐level objectives. However, applying the generated discrete commands of the discrete planner to the original system may face several challenges, including real‐time implementation, preserving the properties of high‐level objectives in the continuous domain, and issues such as discontinuity in control signals that may physically harm the system. To address these issues and challenges, the authors proposed a novel hybrid control structure for systems with non‐linear multi‐affine dynamics over rectangular partitions. In the proposed framework, a discrete planner can be separately designed to achieve high‐level specifications. Then, the proposed hybrid controller generates jumpless continuous control signals to drive the system over the partitioned space executing the discrete commands of the planner. The hybrid controller generates continuous signals in real‐time while respecting the dynamics of the system and preserving the desired objectives of the high‐level plan. The design process is described in detail and the existence and uniqueness of the proposed solution are investigated. Finally, several case studies are provided to verify the effectiveness of the developed technique.more » « less
An official website of the United States government

