skip to main content


Title: Gene Gangs of the Chloroviruses: Conserved Clusters of Collinear Monocistronic Genes
Chloroviruses (family Phycodnaviridae) are dsDNA viruses found throughout the world’s inland waters. The open reading frames in the genomes of 41 sequenced chloroviruses (330 ± 40 kbp each) representing three virus types were analyzed for evidence of evolutionarily conserved local genomic “contexts”, the organization of biological information into units of a scale larger than a gene. Despite a general loss of synteny between virus types, we informatically detected a highly conserved genomic context defined by groups of three or more genes that we have termed “gene gangs”. Unlike previously described local genomic contexts, the definition of gene gangs requires only that member genes be consistently co-localized and are not constrained by strand, regulatory sites, or intervening sequences (and therefore represent a new type of conserved structural genomic element). An analysis of functional annotations and transcriptomic data suggests that some of the gene gangs may organize genes involved in specific biochemical processes, but that this organization does not involve their coordinated expression.  more » « less
Award ID(s):
1736030
NSF-PAR ID:
10104261
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Viruses
Volume:
10
Issue:
10
ISSN:
1999-4915
Page Range / eLocation ID:
576
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Parrish, Colin R. (Ed.)
    ABSTRACT Chloroviruses (family Phycodnaviridae ) are large double-stranded DNA (dsDNA) viruses that infect unicellular green algae present in inland waters. These viruses have been isolated using three main chlorella-like green algal host cells, traditionally called NC64A, SAG, and Pbi, revealing extensive genetic diversity. In this study, we performed a functional genomic analysis on 36 chloroviruses that infected the three different hosts. Phylogenetic reconstruction based on the DNA polymerase B family gene clustered the chloroviruses into three distinct clades. The viral pan-genome consists of 1,345 clusters of orthologous groups of genes (COGs), with 126 COGs conserved in all viruses. Totals of 368, 268, and 265 COGs are found exclusively in viruses that infect NC64A, SAG, and Pbi algal hosts, respectively. Two-thirds of the COGs have no known function, constituting the “dark pan-genome” of chloroviruses, and further studies focusing on these genes may identify important novelties. The proportions of functionally characterized COGs composing the pan-genome and the core-genome are similar, but those related to transcription and RNA processing, protein metabolism, and virion morphogenesis are at least 4-fold more represented in the core genome. Bipartite network construction evidencing the COG sharing among host-specific viruses identified 270 COGs shared by at least one virus from each of the different host groups. Finally, our results reveal an open pan-genome for chloroviruses and a well-established core genome, indicating that the isolation of new chloroviruses can be a valuable source of genetic discovery. IMPORTANCE Chloroviruses are large dsDNA viruses that infect unicellular green algae distributed worldwide in freshwater environments. They comprise a genetically diverse group of viruses; however, a comprehensive investigation of the genomic evolution of these viruses is still missing. Here, we performed a functional pan-genome analysis comprising 36 chloroviruses associated with three different algal hosts in the family Chlorellaceae , referred to as zoochlorellae because of their endosymbiotic lifestyle. We identified a set of 126 highly conserved genes, most of which are related to essential functions in the viral replicative cycle. Several genes are unique to distinct isolates, resulting in an open pan-genome for chloroviruses. This profile is associated with generalist organisms, and new insights into the evolution and ecology of chloroviruses are presented. Ultimately, our results highlight the potential for genetic diversity in new isolates. 
    more » « less
  2. Parrish, Colin R. (Ed.)
    ABSTRACT Bracoviruses (BVs) are endogenized nudiviruses in parasitoid wasps of the microgastroid complex (family Braconidae). Microgastroid wasps have coopted nudivirus genes to produce replication-defective virions that females use to transfer virulence genes to parasitized hosts. The microgastroid complex further consists of six subfamilies and ∼50,000 species but current understanding of BV gene inventories and organization primarily derives from analysis of two wasp species in the subfamily Microgastrinae ( Microplitis demolitor and Cotesia congregata ) that produce M. demolitor BV (MdBV) and C. congregata BV (CcBV). Notably, several genomic features of MdBV and CcBV remain conserved since divergence of M. demolitor and C. congregata ∼53 million years ago (MYA). However, it is unknown whether these conserved traits more broadly reflect BV evolution, because no complete genomes exist for any microgastroid wasps outside the Microgastrinae. In this regard, the subfamily Cheloninae is of greatest interest because it diverged earliest from the Microgastrinae (∼85 MYA) after endogenization of the nudivirus ancestor. Here, we present the complete genome of Chelonus insularis , which is an egg-larval parasitoid in the Cheloninae that produces C. insularis BV (CinsBV). We report that the inventory of nudivirus genes in C. insularis is conserved but are dissimilarly organized compared to M. demolitor and C. congregata . Reciprocally, CinsBV proviral segments share organizational features with MdBV and CcBV but virulence gene inventories exhibit almost no overlap. Altogether, our results point to the functional importance of a conserved inventory of nudivirus genes and a dynamic set of virulence genes for the successful parasitism of hosts. Our results also suggest organizational features previously identified in MdBV and CcBV are likely not essential for BV virion formation. IMPORTANCE Bracoviruses are a remarkable example of virus endogenization, because large sets of genes from a nudivirus ancestor continue to produce virions that thousands of wasp species rely upon to parasitize hosts. Understanding how these genes interact and have been coopted by wasps for novel functions is of broad interest in the study of virus evolution. This work characterizes bracovirus genome components in the parasitoid wasp Chelonus insularis , which together with existing wasp genomes captures a large portion of the diversity among wasp species that produce bracoviruses. Results provide new information about how bracovirus genome components are organized in different wasps while also providing additional insights on key features required for function. 
    more » « less
  3. null (Ed.)
    The structures of the four N-linked glycans from the prototype chlorovirus PBCV-1 major capsid protein do not resemble any other glycans in the three domains of life. All known chloroviruses and antigenic variants (or mutants) share a unique conserved central glycan core consisting of five sugars, except for antigenic mutant virus P1L6, which has four of the five sugars. A combination of genetic and structural analyses indicates that the protein coded by PBCV-1 gene a111/114r, conserved in all chloroviruses, is a glycosyltransferase with three putative domains of approximately 300 amino acids each. Here, in addition to in silico sequence analysis and protein modeling, we measured the hydrolytic activity of protein A111/114R. The results suggest that domain 1 is a galactosyltransferase, domain 2 is a xylosyltransferase and domain 3 is a fucosyltransferase. Thus, A111/114R is the protein likely responsible for the attachment of three of the five conserved residues of the core region of this complex glycan, and, if biochemically corroborated, it would be the second three-domain protein coded by PBCV-1 that is involved in glycan synthesis. Importantly, these findings provide additional support that the chloroviruses do not use the canonical host endoplasmic reticulum–Golgi glycosylation pathway to glycosylate their glycoproteins; instead, they perform glycosylation independent of cellular organelles using virus-encoded enzymes. 
    more » « less
  4. null (Ed.)
    Viruses rely on their host’s translation machinery for the synthesis of their own proteins. Problems belie viral translation when the host has a codon usage bias (CUB) that is different from an infecting virus due to differences in the GC content between the host and virus genomes. Here, we examine the hypothesis that chloroviruses adapted to host CUB by acquisition and selection of tRNAs that at least partially favor their own CUB. The genomes of 41 chloroviruses comprising three clades, each infecting a different algal host, have been sequenced, assembled and annotated. All 41 viruses not only encode tRNAs, but their tRNA genes are located in clusters. While differences were observed between clades and even within clades, seven tRNA genes were common to all three clades of chloroviruses, including the tRNAArg gene, which was found in all 41 chloroviruses. By comparing the codon usage of one chlorovirus algal host, in which the genome has been sequenced and annotated (67% GC content), to that of two of its viruses (40% GC content), we found that the viruses were able to at least partially overcome the host’s CUB by encoding tRNAs that recognize AU-rich codons. Evidence presented herein supports the hypothesis that a chlorovirus tRNA cluster was present in the most recent common ancestor (MRCA) prior to divergence into three clades. In addition, the MRCA encoded a putative isoleucine lysidine synthase (TilS) that remains in 39/41 chloroviruses examined herein, suggesting a strong evolutionary pressure to retain the gene. TilS alters the anticodon of tRNAMet that normally recognizes AUG to then recognize AUA, a codon for isoleucine. This is advantageous to the chloroviruses because the AUA codon is 12–13 times more common in the chloroviruses than their host, further helping the chloroviruses to overcome CUB. Among large DNA viruses infecting eukaryotes, the presence of tRNA genes and tRNA clusters appear to be most common in the Phycodnaviridae and, to a lesser extent, in the Mimiviridae. 
    more » « less
  5. Abstract

    Paramecium bursaria chlorella virus MA-1D is a chlorovirus that infects Chlorella variabilis strain NC64A, a symbiont of the protozoan Paramecium bursaria. MA-1D has a 339-kb genome encoding ca. 366 proteins and 11 tRNAs. Like other chloroviruses, its major capsid protein (MCP) is decorated with N-glycans, whose structures have been solved in this work by using nuclear magnetic spectroscopy and matrix-assisted laser desorption ionization-time of flight mass spectrometry along with MS/MS experiments. This analysis identified three N-linked oligosaccharides that differ in the nonstoichiometric presence of three monosaccharides, with the largest oligosaccharide composed of eight residues organized in a highly branched fashion. The N-glycans described here share several features with those of the other chloroviruses except that they lack a distal xylose unit that was believed to be part of a conserved core region for all the chloroviruses. Examination of the MA-1D genome detected a gene with strong homology to the putative xylosyltransferase in the reference chlorovirus PBCV-1 and in virus NY-2A, albeit mutated with a premature stop codon. This discovery means that we need to reconsider the essential features of the common core glycan region in the chloroviruses.

     
    more » « less