skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Influence of Creep Compaction and Dilatancy on Earthquake Sequences and Slow Slip
Abstract Fluids influence fault zone strength and the occurrence of earthquakes, slow slip events, and aseismic slip. We introduce an earthquake sequence model with fault zone fluid transport, accounting for elastic, viscous, and plastic porosity evolution, with permeability having a power‐law dependence on porosity. Fluids, sourced at a constant rate below the seismogenic zone, ascend along the fault. While the modeling is done for a vertical strike‐slip fault with 2D antiplane shear deformation, the general behavior and processes are anticipated to apply also to subduction zones. The model produces large earthquakes in the seismogenic zone, whose recurrence interval is controlled in part by compaction‐driven pressurization and weakening. The model also produces a complex sequence of slow slip events (SSEs) beneath the seismogenic zone. The SSEs are initiated by compaction‐driven pressurization and weakening and stalled by dilatant suctions. Modeled SSE sequences include long‐term events lasting from a few months to years and very rapid short‐term events lasting for only a few days; slip is ∼1–10 cm. Despite ∼1–10 MPa pore pressure changes, porosity and permeability changes are small and hence fluid flux is relatively constant except in the immediate vicinity of slip fronts. This contrasts with alternative fault valving models that feature much larger changes in permeability from the evolution of pore connectivity. Our model demonstrates the important role that compaction and dilatancy have on fluid pressure and fault slip, with possible relevance to slow slip events in subduction zones and elsewhere.  more » « less
Award ID(s):
1947448
PAR ID:
10409643
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
128
Issue:
4
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Geophysical and geological studies provide evidence for cyclic changes in fault‐zone pore fluid pressure that synchronize with or at least modulate slip events. A hypothesized explanation is fault valving arising from temporal changes in fault zone permeability. In our study, we investigate how the coupled dynamics of rate and state friction, along‐fault fluid flow, and permeability evolution can produce slow slip events. Permeability decreases with time, and increases with slip. Linear stability analysis shows that steady slip with constant fluid flow along the fault zone is unstable to perturbations, even for velocity‐strengthening friction with no state evolution, if the background flow is sufficiently high. We refer to this instability as the “fault valve instability.” The propagation speed of the fluid pressure and slip pulse, which scales with permeability enhancement, can be much higher than expected from linear pressure diffusion. Two‐dimensional simulations with spatially uniform properties show that the fault valve instability develops into slow slip events, in the form of aseismic slip pulses that propagate in the direction of fluid flow. We also perform earthquake sequence simulations on a megathrust fault, taking into account depth‐dependent frictional and hydrological properties. The simulations produce quasi‐periodic slow slip events from the fault valve instability below the seismogenic zone, in both velocity‐weakening and velocity‐strengthening regions, for a wide range of effective normal stresses. A separation of slow slip events from the seismogenic zone, which is observed in some subduction zones, is reproduced when assuming a fluid sink around the mantle wedge corner. 
    more » « less
  2. Abstract Fault-zone fluids control effective normal stress and fault strength. While most earthquake models assume a fixed pore fluid pressure distribution, geologists have documented fault valving behavior, that is, cyclic changes in pressure and unsteady fluid migration along faults. Here we quantify fault valving through 2-D antiplane shear simulations of earthquake sequences on a strike-slip fault with rate-and-state friction, upward Darcy flow along a permeable fault zone, and permeability evolution. Fluid overpressure develops during the interseismic period, when healing/sealing reduces fault permeability, and is released after earthquakes enhance permeability. Coupling between fluid flow, permeability and pressure evolution, and slip produces fluid-driven aseismic slip near the base of the seismogenic zone and earthquake swarms within the seismogenic zone, as ascending fluids pressurize and weaken the fault. This model might explain observations of late interseismic fault unlocking, slow slip and creep transients, swarm seismicity, and rapid pressure/stress transmission in induced seismicity sequences. 
    more » « less
  3. Abstract Megathrust geometric properties exhibit some of the strongest correlations with maximum earthquake magnitude in global surveys of large subduction zone earthquakes, but the mechanisms through which fault geometry influences subduction earthquake cycle dynamics remain unresolved. Here, we develop 39 models of sequences of earthquakes and aseismic slip (SEAS) on variably‐dipping planar and variably‐curved nonplanar megathrusts using the volumetric, high‐order accurate codetandemto account for fault curvature. We vary the dip, downdip curvature and width of the seismogenic zone to examine how slab geometry mechanically influences megathrust seismic cycles, including the size, variability, and interevent timing of earthquakes. Dip and curvature control characteristic slip styles primarily through their influence on seismogenic zone width: wider seismogenic zones allow shallowly‐dipping megathrusts to host larger earthquakes than steeply‐dipping ones. Under elevated pore pressure and less strongly velocity‐weakening friction, all modeled fault geometries host uniform periodic ruptures. In contrast, shallowly‐dipping and sharply‐curved megathrusts host multi‐period supercycles of slow‐to‐fast, small‐to‐large slip events under higher effective stresses and more strongly velocity‐weakening friction. We discuss how subduction zones' maximum earthquake magnitudes may be primarily controlled by the dip and dimensions of the seismogenic zone, while second‐order effects from structurally‐derived mechanical heterogeneity modulate the recurrence frequency and timing of these events. Our results suggest that enhanced co‐ and interseismic strength and stress variability along the megathrust, such as induced near areas of high or heterogeneous fault curvature, limits how frequently large ruptures occur and may explain curved faults' tendency to host more frequent, smaller earthquakes than flat faults. 
    more » « less
  4. Key Points Periodic pore fluid pressure perturbations on a rate‐strengthening fault induce slow slip events (SSEs) Source properties of induced SSEs vary with perturbation characteristics (length scale, amplitude, period) Model reproduces source properties of shallow Hikurangi SSEs, and duration and magnitude of SSEs in different subduction zones 
    more » « less
  5. Abstract Subduction zones host some of Earth's most damaging natural hazards, including megathrust earthquakes and earthquake‐induced tsunamis. A major control on the initiation and rupture characteristics of subduction megathrust earthquakes is how the coupled zone along the subduction interface accumulates elastic strain between events. We present results from observations of slow slip events (SSEs) in Cascadia occurring during the interseismic period downdip of the fully coupled zone, which imply that the orientation of strain accumulation within the coupled zone can vary with depth. Interseismic GPS motions suggest that forces derived from relative plate motions across a shallow, offshore locked plate interface dominate over decadal timescales. Deeper on the plate interface, below the locked (seismogenic) patch, slip during SSEs dominantly occurs in the updip direction, reflecting a dip‐parallel force acting on the slab, such as slab pull. This implies that in subduction zones with obliquely convergent plate motions, the seismogenic zone of the megathrust is loaded by forces acting in two discrete directions, leading to a depth‐varying orientation of strain accumulation on the plate interface. 
    more » « less