skip to main content


Title: Slab interactions in 3D subduction settings: The Philippine Sea Plate region.
The importance of slab–slab interactions is manifested in the kinematics and geometry of the Philippine Sea Plate and western Pacific subduction zones, and such interactions offer a dynamic basis for the first-order observations in this complex subduction setting. The westward subduction of the Pacific Sea Plate changes, along-strike, from single slab subduction beneath Japan, to a double-subduction setting where Pacific subduction beneath the Philippine Sea Plate occurs in tandem with westward subduction of the Philippine Sea Plate beneath Eurasia. Our 3-D numerical models show that there are fundamental differences between single slab systems and double slab systems where both subduction systems have the same vergence. We find that the observed kinematics and slab geometry of the Pacific–Philippine subduction can be understood by considering an along-strike transition from single to double subduction, and is largely independent from the detailed geometry of the Philippine Sea Plate. Important first order features include the relatively shallow slab dip, retreating/stationary trenches, and rapid subduction for single slab systems (Pacific Plate subducting under Japan), and front slabs within a double slab system (Philippine Sea Plate subducting at Ryukyu). In contrast, steep to overturned slab dips, advancing trench motion, and slower subduction occurs for rear slabs in a double slab setting (Pacific subducting at the Izu–Bonin–Mariana). This happens because of a relative build-up of pressure in the asthenosphere beneath the Philippine Sea Plate, where the asthenosphere is constrained between the converging Ryukyu and Izu–Bonin–Mariana slabs. When weak back-arc regions are included, slab–slab convergence rates slow and the middle (Philippine) plate extends, which leads to reduced pressure build up and reduced slab–slab coupling. Models without back-arcs, or with back-arc viscosities that are reduced by a factor of five, produce kinematics compatible with present-day observations.  more » « less
Award ID(s):
1722650
NSF-PAR ID:
10104325
Author(s) / Creator(s):
Date Published:
Journal Name:
Earth and planetary science letters
Volume:
489
Issue:
C
ISSN:
0012-821X
Page Range / eLocation ID:
72-83
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Subduction‐related lavas have higher Fe3+/∑Fe than midocean ridge basalts (MORB). Hypotheses for this offset include imprint from subducting slabs and differentiation in thickened crust. These ideas are readily tested through examination of the time‐dependent evolution of slab‐derived signatures, thickening crust of the overriding plate, and evolving redox during subduction initiation. Here, we present Fe3+/ΣFe and volatile element abundances of volcanic glasses recovered from International Ocean Discovery Program (IODP) Expedition 352 to the Izu‐Bonin‐Mariana (IBM) forearc. The samples include forearc basalts (FAB) that are stratigraphically overlain by low‐ and high‐silica boninite lavas. The FAB glasses have 0.18–0.85 wt% H2O, 75–233 ppm CO2, S contents controlled by saturation with a sulfide phase (602–1,386 ppm), Ba/La from 3.9‐10, and Fe3+/ΣFe ratios from 0.136 to 0.177. These compositions are similar to MORB and suggest that decompression melting of dry and reduced mantle dominates the earliest stages of subduction initiation. Low‐ and high‐silica boninite glasses have 1.51–3.19 wt% H2O, CO2below detection, S contents below those required for sulfide saturation (5–235 ppm), Ba/La from 11 to 29, and Fe3+/∑Fe from 0.181 to 0.225. The compositions are broadly similar to modern arc lavas in the IBM arc. These data demonstrate that the establishment of fluid‐fluxed melting of the mantle, which occurs in just 0.6–1.2 my after subduction initiation, is synchronous with the production of oxidized, mantle‐derived magmas. The coherence of high Fe3+/∑Fe and Ba/La ratios with high H2O contents in Expedition 352 glasses and the modern IBM arc rocks strongly links the production of oxidized arc magmas to signatures of slab dehydration.

     
    more » « less
  2. Abstract

    The along‐strike variations of the velocity, thickness, and dip of subducting slabs and the volcano distribution have been observed globally. It is, however, unclear what controls the distribution of volcanoes and the associated magma generation. With the presence of nonuniform volcanism, the Aleutian‐Alaska subduction zone (AASZ) is an ideal place to investigate subduction segmentation and its relationship with volcanism. Using full‐wave ambient noise tomography, we present a high‐resolution 3‐D shear wave velocity model of the AASZ for the depths of 15–110 km. The velocity model reveals the distinct high‐velocity Pacific slab, the thicker, flatter, and more heterogeneous Yakutat slab, and the northeasterly dipping Wrangell slab. We observe low velocities within the uppermost mantle (at depth <60 km) below the Aleutian arc volcanoes, representing partial melt accumulation. The large crustal low‐velocity anomaly beneath the Wrangell volcanic field suggests a large magma reservoir, likely responsible for the clustering of volcanoes. The Denali volcanic gap is above an average‐velocity crust but an extremely fast mantle wedge, suggesting the lack of subsurface melt. This is in contrast with the lower‐velocity back‐arc mantle beneath the adjacent Buzzard Creek‐Jumbo Dome volcanoes to the east. The back‐arc low velocities associated with the Pacific, the eastern Yakutat, and the Wrangell slabs may reflect subduction‐driven mantle upwelling. The structural variation of the downgoing slabs and the overriding plate explains the change of volcanic activity along the AASZ. Our findings demonstrate the combined role of the subducting slab and the overriding plate in controlling the characteristics of arc magmatism.

     
    more » « less
  3. Abstract

    The plate tectonic history of the hypothesized “proto‐South China Sea” (PSCS) ocean basin and surrounding SE Asia since Cenozoic times is controversial. We implement four diverse proto‐South China Sea plate reconstructions into global geodynamic models to constrain PSCS plate tectonics and possible slab locations. Our plate reconstructions consider the following: southward versus double‐sided PSCS subduction models; earlier (Eocene) or later (late Oligocene) initiation of Borneo counterclockwise rotations; and larger or smaller reconstructed Philippine Sea plate sizes. We compare our modeling results against tomographic images by accounting for mineralogical effects and the finite resolution of seismic tomography. All geodynamic models reproduce the tomographically imaged Sunda slabs beneath Peninsular Malaysia, Sumatra, and Java. Southward PSCS subduction produces slabs beneath present Palawan, northern Borneo, and offshore Palawan. Double‐sided PSCS subduction combined with earlier Borneo rotations uniquely reproduces subhorizontal slabs under the southern South China Sea (SCS) at ~400 to 700 km depths; these models best fit seismic tomography. A smaller Philippine Sea (PS) plate with a ~1,000‐km‐long restored Ryukyu slab was superior to a very large PS plate. Considered together, our four end‐member plate reconstructions predict that the PSCS slabs are now at <900 km depths under present‐day Borneo, the SCS, the Sulu and Celebes seas, and the southern Philippines. Regardless of plate reconstruction, we predict (1) mid‐Cenozoic passive return‐flow upwellings under Indochina; and (2) late Cenozoic downwellings under the SCS that do not support a deep‐origin “Hainan plume.” Modeled Sundaland dynamic topography strongly depends on the imposed plate reconstructions, varying by almost 1 km.

     
    more » « less
  4. null (Ed.)
    Abstract The subducted old and cold Pacific Plate beneath the young Philippine Sea Plate at the Izu‐Bonin trench over the Cenozoic hosts regional deep earthquakes. We investigate slab morphology and stress regimes under different trench motion histories with mantle convection models. Viscosity, temperature, and deviatoric stress are inherently heterogeneous within the slab, which we link to the occurrence of isolated earthquakes. Models expand on previous suggestions that observed slab morphology variations along the Izu‐Bonin subduction zone, exhibited as shallow slab dip angles in the north and steeper dip angles in the south, are mainly due to variations in the rate of trench retreat from the north (where it is fast) to the south (where it is slow). Geodynamic models consistent with the regional plate tectonics, including oceanic plate age, plate convergence rate, and trench motion history, reproduce the seismologically observed principal stress direction and slab morphology. We suggest that the isolated ~680 km deep, 30 May 2015 Mw 7.9 Bonin Islands earthquake, which lies east of the well‐defined Benioff zone and has its principal compressional stress direction oriented toward the tip of the previously defined Benioff zone, can be explained by Pacific slab buckling in response to the slow trench retreat. 
    more » « less
  5. Abstract

    Subduction zones are fundamental features of Earth's mantle convection and plate tectonics, but mantle flow and pressure around slabs are poorly understood because of the lack of direct observational constraints on subsurface flow. To characterize the linkages between slabs and mantle flow, we integrate high‐resolution representations of Earth's lithosphere and slabs into a suite of global mantle convection models to produce physically plausible present‐day flow fields for Earth's mantle. We find that subduction zones containing wide, thick, and long slabs dominate regional mantle flow in the neighboring regions and this flow conforms to patterns predicted by simpler regional subduction models. These subduction zones, such as Kuril‐Japan‐Izu‐Bonin‐Mariana, feature prismatic poloidal flow coupled to the downgoing slab that rotates toward toroidal slab‐parallel flow near the slab edge. However, other subduction zones, such as Sumatra, deviate from this pattern because of the competing influence of other slabs or longer‐wavelength mantle flow, showing that upper mantle flow can link separate subduction zones and how flow at subduction zones is influenced by broader scale mantle flow. We find that the non‐linear dislocation creep reduces the coupling between slab motion and asthenospheric flow and increases the occurrence of non‐ideal flow, in line with inferences derived from seismological constraints on mantle anisotropy.

     
    more » « less