skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Slab interactions in 3D subduction settings: The Philippine Sea Plate region.
The importance of slab–slab interactions is manifested in the kinematics and geometry of the Philippine Sea Plate and western Pacific subduction zones, and such interactions offer a dynamic basis for the first-order observations in this complex subduction setting. The westward subduction of the Pacific Sea Plate changes, along-strike, from single slab subduction beneath Japan, to a double-subduction setting where Pacific subduction beneath the Philippine Sea Plate occurs in tandem with westward subduction of the Philippine Sea Plate beneath Eurasia. Our 3-D numerical models show that there are fundamental differences between single slab systems and double slab systems where both subduction systems have the same vergence. We find that the observed kinematics and slab geometry of the Pacific–Philippine subduction can be understood by considering an along-strike transition from single to double subduction, and is largely independent from the detailed geometry of the Philippine Sea Plate. Important first order features include the relatively shallow slab dip, retreating/stationary trenches, and rapid subduction for single slab systems (Pacific Plate subducting under Japan), and front slabs within a double slab system (Philippine Sea Plate subducting at Ryukyu). In contrast, steep to overturned slab dips, advancing trench motion, and slower subduction occurs for rear slabs in a double slab setting (Pacific subducting at the Izu–Bonin–Mariana). This happens because of a relative build-up of pressure in the asthenosphere beneath the Philippine Sea Plate, where the asthenosphere is constrained between the converging Ryukyu and Izu–Bonin–Mariana slabs. When weak back-arc regions are included, slab–slab convergence rates slow and the middle (Philippine) plate extends, which leads to reduced pressure build up and reduced slab–slab coupling. Models without back-arcs, or with back-arc viscosities that are reduced by a factor of five, produce kinematics compatible with present-day observations.  more » « less
Award ID(s):
1722650
PAR ID:
10104325
Author(s) / Creator(s):
Date Published:
Journal Name:
Earth and planetary science letters
Volume:
489
Issue:
C
ISSN:
0012-821X
Page Range / eLocation ID:
72-83
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The subducted old and cold Pacific Plate beneath the young Philippine Sea Plate at the Izu‐Bonin trench over the Cenozoic hosts regional deep earthquakes. We investigate slab morphology and stress regimes under different trench motion histories with mantle convection models. Viscosity, temperature, and deviatoric stress are inherently heterogeneous within the slab, which we link to the occurrence of isolated earthquakes. Models expand on previous suggestions that observed slab morphology variations along the Izu‐Bonin subduction zone, exhibited as shallow slab dip angles in the north and steeper dip angles in the south, are mainly due to variations in the rate of trench retreat from the north (where it is fast) to the south (where it is slow). Geodynamic models consistent with the regional plate tectonics, including oceanic plate age, plate convergence rate, and trench motion history, reproduce the seismologically observed principal stress direction and slab morphology. We suggest that the isolated ~680 km deep, 30 May 2015 Mw 7.9 Bonin Islands earthquake, which lies east of the well‐defined Benioff zone and has its principal compressional stress direction oriented toward the tip of the previously defined Benioff zone, can be explained by Pacific slab buckling in response to the slow trench retreat. 
    more » « less
  2. Abstract The plate tectonic history of the hypothesized “proto‐South China Sea” (PSCS) ocean basin and surrounding SE Asia since Cenozoic times is controversial. We implement four diverse proto‐South China Sea plate reconstructions into global geodynamic models to constrain PSCS plate tectonics and possible slab locations. Our plate reconstructions consider the following: southward versus double‐sided PSCS subduction models; earlier (Eocene) or later (late Oligocene) initiation of Borneo counterclockwise rotations; and larger or smaller reconstructed Philippine Sea plate sizes. We compare our modeling results against tomographic images by accounting for mineralogical effects and the finite resolution of seismic tomography. All geodynamic models reproduce the tomographically imaged Sunda slabs beneath Peninsular Malaysia, Sumatra, and Java. Southward PSCS subduction produces slabs beneath present Palawan, northern Borneo, and offshore Palawan. Double‐sided PSCS subduction combined with earlier Borneo rotations uniquely reproduces subhorizontal slabs under the southern South China Sea (SCS) at ~400 to 700 km depths; these models best fit seismic tomography. A smaller Philippine Sea (PS) plate with a ~1,000‐km‐long restored Ryukyu slab was superior to a very large PS plate. Considered together, our four end‐member plate reconstructions predict that the PSCS slabs are now at <900 km depths under present‐day Borneo, the SCS, the Sulu and Celebes seas, and the southern Philippines. Regardless of plate reconstruction, we predict (1) mid‐Cenozoic passive return‐flow upwellings under Indochina; and (2) late Cenozoic downwellings under the SCS that do not support a deep‐origin “Hainan plume.” Modeled Sundaland dynamic topography strongly depends on the imposed plate reconstructions, varying by almost 1 km. 
    more » « less
  3. Abstract Subduction zones are fundamental features of Earth's mantle convection and plate tectonics, but mantle flow and pressure around slabs are poorly understood because of the lack of direct observational constraints on subsurface flow. To characterize the linkages between slabs and mantle flow, we integrate high‐resolution representations of Earth's lithosphere and slabs into a suite of global mantle convection models to produce physically plausible present‐day flow fields for Earth's mantle. We find that subduction zones containing wide, thick, and long slabs dominate regional mantle flow in the neighboring regions and this flow conforms to patterns predicted by simpler regional subduction models. These subduction zones, such as Kuril‐Japan‐Izu‐Bonin‐Mariana, feature prismatic poloidal flow coupled to the downgoing slab that rotates toward toroidal slab‐parallel flow near the slab edge. However, other subduction zones, such as Sumatra, deviate from this pattern because of the competing influence of other slabs or longer‐wavelength mantle flow, showing that upper mantle flow can link separate subduction zones and how flow at subduction zones is influenced by broader scale mantle flow. We find that the non‐linear dislocation creep reduces the coupling between slab motion and asthenospheric flow and increases the occurrence of non‐ideal flow, in line with inferences derived from seismological constraints on mantle anisotropy. 
    more » « less
  4. Why the Challenger Deep, the deepest point on Earth’s solid surface, is so deep is unclear, but part of the reason must be the age and density of the downgoing plate. Northwest Pacific oceanic crust subducting in the Izu-Bonin-Mariana Trench is Cretaceous and Jurassic, but the age and nature of Pacific oceanic crust subducting in the southernmost Mariana Trench remains unknown. Here we present the first study of seafloor basalts recovered by the full-ocean-depth crewed submersible Fendouzhe from the deepest seafloor around the Challenger Deep, from both the overriding and downgoing plates. 40Ar/39Ar ages indicate that downgo¬ing basalts are Early Cretaceous (ca. 125 Ma), indicating they are part of the Pacific plate rather than the nearby Oligocene Caroline microplate. Downgoing-plate basalts are slightly enriched in incompatible elements but have similar trace element and Hf isotope compositions to other northwest Pacific mid-ocean ridge basalts (MORBs). They also have slightly enriched Sr-Nd-Pb isotope compositions like those of the Indian mantle domain. These features may have formed with contributions from plume-derived components via plume-ridge interac¬tions. One sample from the overriding plate gives an 40Ar/39Ar age of ca. 55 Ma, about the same age as subduction initiation, to form the Izu-Bonin-Mariana convergent margin. Our results suggest that 50%–90% of the Pb budget of Mariana arc magmas is derived from the subducted MORBs with Indian-type isotope affinity. 
    more » « less
  5. SUMMARY We present a new 3-D radially anisotropic seismic velocity model EARA2024 of the crust and mantle beneath East Asia and the northwestern Pacific using adjoint full-waveform inversion tomography. We construct the EARA2024 model by iteratively minimizing the waveform similarity misfit between the synthetic and observed waveforms from 142 earthquakes recorded by about 2000 broad-band stations in East Asia. Compared to previous studies, this new model renders significantly improved images of the subducted oceanic plate in the upper mantle, mantle transition zone, and uppermost lower mantle along the Kuril, Japan, Izu-Bonin and Ryukyu Trenches. Complex slab deformation and break-offs are observed at different depths. Moreover, our model provides new insights into the origins of intraplate volcanoes in East Asia, including the Changbaishan, Datong-Fengzhen, Tengchong and Hainan volcanic fields. 
    more » « less