skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Packing of apolar side chains enables accurate design of highly stable membrane proteins
The features that stabilize the structures of membrane proteins remain poorly understood. Polar interactions contribute modestly, and the hydrophobic effect contributes little to the energetics of apolar side-chain packing in membranes. Disruption of steric packing can destabilize the native folds of membrane proteins, but is packing alone sufficient to drive folding in lipids? If so, then membrane proteins stabilized by this feature should be readily designed and structurally characterized—yet this has not been achieved. Through simulation of the natural protein phospholamban and redesign of variants, we define a steric packing code underlying its assembly. Synthetic membrane proteins designed using this code and stabilized entirely by apolar side chains conform to the intended fold. Although highly stable, the steric complementarity required for their folding is surprisingly stringent. Structural informatics shows that the designed packing motif recurs across the proteome, emphasizing a prominent role for precise apolar packing in membrane protein folding, stabilization, and evolution.  more » « less
Award ID(s):
1709506
PAR ID:
10104341
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Science
Volume:
363
Issue:
6434
ISSN:
0036-8075
Page Range / eLocation ID:
1418 to 1423
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Packing interaction is a critical driving force in the folding of helical membrane proteins. Despite the importance, packing defects (i.e., cavities including voids, pockets, and pores) are prevalent in membrane-integral enzymes, channels, transporters, and receptors, playing essential roles in function. Then, a question arises regarding how the two competing requirements, packing for stability vs. cavities for function, are reconciled in membrane protein structures. Here, using the intramembrane protease GlpG of Escherichia coli as a model and cavity-filling mutation as a probe, we tested the impacts of native cavities on the thermodynamic stability and function of a membrane protein. We find several stabilizing mutations which induce substantial activity reduction without distorting the active site. Notably, these mutations are all mapped onto the regions of conformational flexibility and functional importance, indicating that the cavities facilitate functional movement of GlpG while compromising the stability. Experiment and molecular dynamics simulation suggest that the stabilization is induced by the coupling between enhanced protein packing and weakly unfavorable lipid desolvation, or solely by favorable lipid solvation on the cavities. Our result suggests that, stabilized by the relatively weak interactions with lipids, cavities are accommodated in membrane proteins without severe energetic cost, which, in turn, serve as a platform to fine-tune the balance between stability and flexibility for optimal activity. 
    more » « less
  2. Defining the denatured state ensemble (DSE) and disordered proteins is essential to understanding folding, chaperone action, degradation, and translocation. As compared with water-soluble proteins, the DSE of membrane proteins is much less characterized. Here, we measure the DSE of the helical membrane protein GlpG ofEscherichia coli(E. coli) in native-like lipid bilayers. The DSE was obtained using our steric trapping method, which couples denaturation of doubly biotinylated GlpG to binding of two streptavidin molecules. The helices and loops are probed using limited proteolysis and mass spectrometry, while the dimensions are determined using our paramagnetic biotin derivative and double electron–electron resonance spectroscopy. These data, along with ourUpsidesimulations, identify the DSE as being highly dynamic, involving the topology changes and unfolding of some of the transmembrane (TM) helices. The DSE is expanded relative to the native state but only to 15 to 75% of the fully expanded condition. The degree of expansion depends on the local protein packing and the lipid composition.E. coli’s lipid bilayer promotes the association of TM helices in the DSE and, probably in general, facilitates interhelical interactions. This tendency may be the outcome of a general lipophobic effect of proteins within the cell membranes. 
    more » « less
  3. Abstract Ficoll, an inert macromolecule, is a common in vitro crowder, but by itself it does not reproduce in‐cell stability or kinetic trends for protein folding. Lysis buffer, which contains ions, glycerol as a simple kosmotrope, and mimics small crowders with hydrophilic/hydrophobic patches, can reproduce sticking trends observed in cells but not the crowding. We previously suggested that the proper combination of Ficoll and lysis buffer could reproduce the opposite in‐cell folding stability trend of two proteins: variable major protein‐like sequence expressed (VlsE) is destabilized in eukaryotic cells and phosphoglycerate kinase (PGK) is stabilized. Here, to discover a well‐characterized solvation environment that mimics in‐cell stabilities for these two very differently behaved proteins, we conduct a two‐dimensional scan of Ficoll (0–250 mg/ml) and lysis buffer (0–75%) mixtures. Contrary to our previous expectation, we show that mixtures of Ficoll and lysis buffer have a significant nonadditive effect on the folding stability. Lysis buffer enhances the stabilizing effect of Ficoll on PGK and inhibits the stabilizing effect of Ficoll on VlsE. We demonstrate that a combination of 150 mg/ml Ficoll and 60% lysis buffer can be used as an in vitro mimic to account for both crowding and non‐steric effects on PGK and VlsE stability and folding kinetics in the cell. Our results also suggest that this mixture is close to the point where phase separation will occur. The simple mixture proposed here, based on commercially available reagents, could be a useful tool to study a variety of cytoplasmic protein interactions, such as folding, binding and assembly, and enzymatic reactions. Significance StatementThe complexity of the in‐cell environment is difficult to reproduce in the test tube. Here we validate a mimic of cellular crowding and sticking interactions in a test tube using two proteins that are differently impacted by the cell: one is stabilized and the other is destabilized. This mimic is a starting point to reproduce cellular effects on a variety of protein and biomolecular interactions, such as folding and binding. 
    more » « less
  4. Abstract The forces that stabilize membrane proteins remain elusive to precise quantification. Particularly important, but poorly resolved, are the forces present during the initial unfolding of a membrane protein, where the most native set of interactions is present. A high‐precision, atomic force microscopy assay was developed to study the initial unfolding of bacteriorhodopsin. A rapid near‐equilibrium folding between the first three unfolding states was discovered, the two transitions corresponded to the unfolding of five and three amino acids, respectively, when using a cantilever optimized for 2 μs resolution. The third of these states was retinal‐stabilized and previously undetected, despite being the most mechanically stable state in the whole unfolding pathway, supporting 150 pN for more than 1 min. This ability to measure the dynamics of the initial unfolding of bacteriorhodopsin provides a platform for quantifying the energetics of membrane proteins under native‐like conditions. 
    more » « less
  5. One of the challenges and a significant part of a protein structure’s prediction in three-dimensional space is a side chain prediction/packing. This area of research has a large importance, due to its various applications in protein design. In recent years, many methodologies and techniques have been crafted for side chain prediction such as DLPacker, FASPR, SCWRL4 and OPUS-Rota4. In this research, we address the problem from a different perspective. We employed a machine learning model to predict the side chain packing of protein molecules given only the Cα trace. We analyzed 32,000 protein molecules to extract important geometrical features that can distinguish between different orientations of side chain rotamers. We designed and implemented a Random Forest model to tackle this problem. Given the accuracy of existing state-of-the-art approaches, our model represents an improvement from among other models. The results of our experiment show that Random Forest is highly effective, achieving a total average accuracy of 73.7% for proteins and 73.3% for individual amino acids. 
    more » « less