skip to main content


Title: Quantifying the Initial Unfolding of Bacteriorhodopsin Reveals Retinal Stabilization
Abstract

The forces that stabilize membrane proteins remain elusive to precise quantification. Particularly important, but poorly resolved, are the forces present during the initial unfolding of a membrane protein, where the most native set of interactions is present. A high‐precision, atomic force microscopy assay was developed to study the initial unfolding of bacteriorhodopsin. A rapid near‐equilibrium folding between the first three unfolding states was discovered, the two transitions corresponded to the unfolding of five and three amino acids, respectively, when using a cantilever optimized for 2 μs resolution. The third of these states was retinal‐stabilized and previously undetected, despite being the most mechanically stable state in the whole unfolding pathway, supporting 150 pN for more than 1 min. This ability to measure the dynamics of the initial unfolding of bacteriorhodopsin provides a platform for quantifying the energetics of membrane proteins under native‐like conditions.

 
more » « less
Award ID(s):
1716033
NSF-PAR ID:
10083048
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
58
Issue:
6
ISSN:
1433-7851
Page Range / eLocation ID:
p. 1710-1713
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The forces that stabilize membrane proteins remain elusive to precise quantification. Particularly important, but poorly resolved, are the forces present during the initial unfolding of a membrane protein, where the most native set of interactions is present. A high‐precision, atomic force microscopy assay was developed to study the initial unfolding of bacteriorhodopsin. A rapid near‐equilibrium folding between the first three unfolding states was discovered, the two transitions corresponded to the unfolding of five and three amino acids, respectively, when using a cantilever optimized for 2 μs resolution. The third of these states was retinal‐stabilized and previously undetected, despite being the most mechanically stable state in the whole unfolding pathway, supporting 150 pN for more than 1 min. This ability to measure the dynamics of the initial unfolding of bacteriorhodopsin provides a platform for quantifying the energetics of membrane proteins under native‐like conditions.

     
    more » « less
  2. Single amino acid mutations provide quantitative insight into the energetics that underlie the dynamics and folding of membrane proteins. Chemical denaturation is the most widely used assay and yields the change in unfolding free energy (ΔΔG). It has been applied to >80 different residues of bacteriorhodopsin (bR), a model membrane protein. However, such experiments have several key limitations: 1) a nonnative lipid environment, 2) a denatured state with significant secondary structure, 3) error introduced by extrapolation to zero denaturant, and 4) the requirement of globally reversible refolding. We overcame these limitations by reversibly unfolding local regions of an individual protein with mechanical force using an atomic-force-microscope assay optimized for 2 μs time resolution and 1 pN force stability. In this assay, bR was unfolded from its native bilayer into a well-defined, stretched state. To measure ΔΔG, we introduced two alanine point mutations into an 8-amino-acid region at the C-terminal end of bR’s G helix. For each, we reversibly unfolded and refolded this region hundreds of times while the rest of the protein remained folded. Our single-molecule–derived ΔΔGfor mutant L223A (−2.3 ± 0.6 kcal/mol) quantitatively agreed with past chemical denaturation results while our ΔΔGfor mutant V217A was 2.2-fold larger (−2.4 ± 0.6 kcal/mol). We attribute the latter result, in part, to contact between Val217and a natively bound squalene lipid, highlighting the contribution of membrane protein–lipid contacts not present in chemical denaturation assays. More generally, we established a platform for determining ΔΔGfor a fully folded membrane protein embedded in its native bilayer.

     
    more » « less
  3. Precisely quantifying the energetics that drive the folding of membrane proteins into a lipid bilayer remains challenging. More than 15 years ago, atomic force microscopy (AFM) emerged as a powerful tool to mechanically extract individual membrane proteins from a lipid bilayer. Concurrently, fluctuation theorems, such as the Jarzynski equality, were applied to deduce equilibrium free energies (ΔG0) from non-equilibrium single-molecule force spectroscopy records. The combination of these two advances in single-molecule studies deduced the free-energy of the model membrane protein bacteriorhodopsin in its native lipid bilayer. To elucidate this free-energy landscape at a higher resolution, we applied two recent developments. First, as an input to the reconstruction, we used force-extension curves acquired with a 100-fold higher time resolution and 10-fold higher force precision than traditional AFM studies of membrane proteins. Next, by using an inverse Weierstrass transform and the Jarzynski equality, we removed the free energy associated with the force probe and determined the molecular free-energy landscape of the molecule under study, bacteriorhodopsin. The resulting landscape yielded an average unfolding free energy per amino acid (aa) of 1.0 ± 0.1 kcal/mol, in agreement with past single-molecule studies. Moreover, on a smaller spatial scale, this high-resolution landscape also agreed with an equilibrium measurement of a particular three-aa transition in bacteriorhodopsin that yielded 2.7 kcal/mol/aa, an unexpectedly high value. Hence, while average unfolding ΔG0 per aa is a useful metric, the derived high-resolution landscape details significant local variation from the mean. More generally, we demonstrated that, as anticipated, the inverse Weierstrass transform is an efficient means to reconstruct free-energy landscapes from AFM data. 
    more » « less
  4. Single-molecule force spectroscopy methods, such as AFM and magnetic tweezers, have proved extremely beneficial in elucidating folding pathways for soluble and membrane proteins. To identify factors that determine the force rupture levels in force-induced membrane protein unfolding, we applied our near-atomic-level Upside molecular dynamics package to study the vertical and lateral pulling of bacteriorhodopsin (bR) and GlpG, respectively. With our algorithm, we were able to selectively alter the magnitudes of individual interaction terms and identify that, for vertical pulling, hydrogen bond strength had the strongest effect, whereas other non-bonded protein and membrane–protein interactions had only moderate influences, except for the extraction of the last helix where the membrane–protein interactions had a stronger influence. The up–down topology of the transmembrane helices caused helices to be pulled out as pairs. The rate-limiting rupture event often was the loss of H-bonds and the ejection of the first helix, which then propagated tension to the second helix, which rapidly exited the bilayer. The pulling of the charged linkers across the membrane had minimal influence, as did changing the bilayer thickness. For the lateral pulling of GlpG, the rate-limiting rupture corresponded to the separation of the helices within the membrane, with the H-bonds generally being broken only afterward. Beyond providing a detailed picture of the rupture events, our study emphasizes that the pulling mode greatly affects the factors that determine the forces needed to unfold a membrane protein. 
    more » « less
  5. Abstract

    The native structures of proteins, except for notable exceptions of intrinsically disordered proteins, in general take their most stable conformation in the physiological condition to maintain their structural framework so that their biological function can be properly carried out. Experimentally, the stability of a protein can be measured by several means, among which the pulling experiment using the atomic force microscope (AFM) stands as a unique method. AFM directly measures the resistance from unfolding, which can be quantified from the observed force‐extension profile. It has been shown that key features observed in an AFM pulling experiment can be well reproduced by computational molecular dynamics simulations. Here, we applied computational pulling for estimating the accuracy of computational protein structure models under the hypothesis that the structural stability would positively correlated with the accuracy, i.e. the closeness to the native, of a model. We used in total 4929 structure models for 24 target proteins from the Critical Assessment of Techniques of Structure Prediction (CASP) and investigated if the magnitude of the break force, that is, the force required to rearrange the model's structure, from the force profile was sufficient information for selecting near‐native models. We found that near‐native models can be successfully selected by examining their break forces suggesting that high break force indeed indicates high stability of models. On the other hand, there were also near‐native models that had relatively low peak forces. The mechanisms of the stability exhibited by the break forces were explored and discussed.

     
    more » « less