skip to main content


Title: Efficient hole transfer from monolayer WS 2 to ultrathin amorphous black phosphorus
The newly developed van der Waals materials allow fabrication of multilayer heterostructures. Early efforts have mostly focused on heterostructures formed by similar materials. More recently, however, attempts have been made to expand the types of materials, such as topological insulators and organic semiconductors. Here we introduce an amorphous semiconductor to the material library for constructing van der Waals heterostructures. Samples composed of 2 nm amorphous black phosphorus synthesized by pulsed laser deposition and monolayer WS 2 obtained by mechanical exfoliation were fabricated by dry transfer. Photoluminescence measurements revealed that photocarriers excited in WS 2 of the heterostructure transfer to amorphous black phosphorus, in the form of either energy or charge transfer, on a time scale shorter than the exciton lifetime in WS 2 . Transient absorption measurements further indicate that holes can efficiently transfer from WS 2 to amorphous black phosphorus. However, interlayer electron transfer in either direction was found to be absent. The lack of electron transfer from amorphous black phosphorus to WS 2 is attributed to the localized electronic states in the amorphous semiconductor. Furthermore, we show that a hexagonal BN bilayer can effectively change the hole transfer process.  more » « less
Award ID(s):
1505852
NSF-PAR ID:
10104418
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nanoscale Horizons
Volume:
4
Issue:
1
ISSN:
2055-6756
Page Range / eLocation ID:
236 to 242
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We fabricated a van der Waals heterostructure of WS 2 –ReSe 2 and studied its charge-transfer properties. Monolayers of WS 2 and ReSe 2 were obtained by mechanical exfoliation and chemical vapor deposition, respectively. The heterostructure sample was fabricated by transferring the WS 2 monolayer on top of ReSe 2 by a dry transfer process. Photoluminescence quenching was observed in the heterostructure, indicating efficient interlayer charge transfer. Transient absorption measurements show that holes can efficiently transfer from WS 2 to ReSe 2 on an ultrafast timescale. Meanwhile, electron transfer from ReSe 2 to WS 2 was also observed. The charge-transfer properties show that monolayers of ReSe 2 and WS 2 form a type-II band alignment, instead of type-I as predicted by theory. The type-II alignment is further confirmed by the observation of extended photocarrier lifetimes in the heterostructure. These results provide useful information for developing van der Waals heterostructure involving ReSe 2 for novel electronic and optoelectronic applications and introduce ReSe 2 to the family of two-dimensional materials to construct van der Waals heterostructures. 
    more » « less
  2. Abstract

    The valley Zeeman physics of excitons in monolayer transition metal dichalcogenides provides valuable insight into the spin and orbital degrees of freedom inherent to these materials. Being atomically-thin materials, these degrees of freedom can be influenced by the presence of adjacent layers, due to proximity interactions that arise from wave function overlap across the 2D interface. Here, we report 60 T magnetoreflection spectroscopy of the A- and B- excitons in monolayer WS2, systematically encapsulated in monolayer graphene. While the observed variations of the valley Zeeman effect for the A- exciton are qualitatively in accord with expectations from the bandgap reduction and modification of the exciton binding energy due to the graphene-induced dielectric screening, the valley Zeeman effect for the B- exciton behaves markedly different. We investigate prototypical WS2/graphene stacks employing first-principles calculations and find that the lower conduction band of WS2at theK/Kvalleys (theCBband) is strongly influenced by the graphene layer on the orbital level. Specifically, our detailed microscopic analysis reveals that the conduction band at theQpoint of WS2mediates the coupling betweenCBand graphene due to resonant energy conditions and strong coupling to the Dirac cone. This leads to variations in the valley Zeeman physics of the B- exciton, consistent with the experimental observations. Our results therefore expand the consequences of proximity effects in multilayer semiconductor stacks, showing that wave function hybridization can be a multi-step energetically resonant process, with different bands mediating the interlayer interactions. Such effects can be further exploited to resonantly engineer the spin-valley degrees of freedom in van der Waals and moiré heterostructures.

     
    more » « less
  3. Van der Waals heterojunctions of two-dimensional transition-metal dichalcogenides are intensely investigated for multiple optoelectronics applications. Strong and adjustable interactions between layers can influence the charge and energy flow that govern material performance. We report ab initio quantum molecular dynamics investigation of the influence of the bilayer twist angle on charge transfer and recombination in MoS 2 /WS 2 heterojunctions, including high-symmetry 0° and 60° configurations, and low symmetry 9.43° and 50.57° structures with Moiré patterns. The twist angle modulates interlayer coupling, as evidenced by changes in the interlayer distance, electron-vibrational interactions, and spectral shifts in the out-of-plane vibrational frequencies. Occurring on a femtosecond timescale, the hole transfer depends weakly on the twist angle and is ultrafast due to high density of acceptor states and large nonadiabatic coupling. In contrast, the electron–hole recombination takes nanoseconds and varies by an order of magnitude depending on the twist angle. The recombination is slow because it occurs across a large energy gap. It depends on the twist angle because the nonadiabatic coupling is sensitive to the interlayer distance and overlap of electron and hole wavefunctions. The Moiré pattern systems exhibit weaker interlayer interaction, generating longer-lived charges. Both charge separation and recombination are driven by out-of-plane vibrational motions. The simulations rationalize the experimental results on the influence of the bilayer twist angle on the charge separation and recombination. The atomistic insights provide theoretical guidance for design of high-performance optoelectronic devices based on 2D van der Waals heterostructures. 
    more » « less
  4. Abstract

    Heat dissipation is a major limitation of high‐performance electronics. This is especially important in emerging nanoelectronic devices consisting of ultra‐thin layers, heterostructures, and interfaces, where enhancement in thermal transport is highly desired. Here, ultra‐high interfacial thermal conductance in encapsulated van der Waals (vdW) heterostructures with single‐layer transition metal dichalcogenides MX2(MoS2, WSe2, WS2) sandwiched between two hexagonal boron nitride (hBN) layers is reported. Through Raman spectroscopic measurements of suspended and substrate‐supported hBN/MX2/hBN heterostructures with varying laser power and temperature, the out‐of‐plane interfacial thermal conductance in the vertical stack is calibrated. The measured interfacial thermal conductance between MX2and hBN reaches 74 ± 25 MW m−2K−1, which is at least ten times higher than the interfacial thermal conductance of MX2in non‐encapsulation structures. Molecular dynamics (MD) calculations verify and explain the experimental results, suggesting a full encapsulation by hBN layers is accounting for the high interfacial conductance. This ultra‐high interfacial thermal conductance is attributed to the double heat transfer pathways and the clean and tight vdW interface between two crystalline 2D materials. The findings in this study reveal new thermal transport mechanisms in hBN/MX2/hBN structures and shed light on building novel hBN‐encapsulated nanoelectronic devices with enhanced thermal management.

     
    more » « less
  5. Abstract

    Recently, 2D electron gases have been observed in atomically thin semiconducting crystals, enabling the observation of rich physical phenomena at the quantum level within the ultimate thickness limit. However, the observation of 2D electron gases and subsequent quantum Hall effect require exceptionally high crystalline quality, rendering mechanical exfoliation as the only method to produce high‐quality 2D semiconductors of black phosphorus and indium selenide (InSe), which hinder large‐scale device applications. Here, the controlled one‐step synthesis of high‐quality 2D InSe thin films via chemical vapor transport method is reported. The carrier Hall mobility of hexagonal boron nitride (hBN) encapsulated InSe flakes can be up to 5000 cm2V−1s−1at 1.5 K, enabling to observe the quantum Hall effect in a synthesized van der Waals semiconductor. The existence of the quantum Hall effect in directly synthesized 2D semiconductors indicates a high quality of the chemically synthesized 2D semiconductors, which hold promise in quantum devices and applications with high mobility.

     
    more » « less