The covalent interaction of N-heterocyclic carbenes (NHCs) with transition metal atoms gives rise to distinctive frontier molecular orbitals (FMOs). These emergent electronic states have spurred the widespread adoption of NHC ligands in chemical catalysis and functional materials. Although formation of carbene-metal complexes in self-assembled monolayers on surfaces has been explored, design and electronic structure characterization of extended low-dimensional NHC-metal lattices remains elusive. Here we demonstrate a modular approach to engineering one-dimensional (1D) metal-organic chains and two-dimensional (2D) Kagome lattices using the FMOs of NHC–Au–NHC junctions to create low-dimensional molecular networks exhibiting intrinsic metallicity. Scanning tunneling spectroscopy and first-principles density functional theory reveal the contribution of C–Au–C π-bonding states to dispersive bands that imbue 1D- and 2D-NHC lattices with exceptionally small work functions.
more »
« less
Determination of the structure and geometry of N-heterocyclic carbenes on Au(111) using high-resolution spectroscopy
N-heterocyclic carbenes (NHCs) bind very strongly to transition metals due to their unique electronic structure featuring a divalent carbon atom with a lone pair in a highly directional sp 2 -hybridized orbital. As such, they can be assembled into monolayers on metal surfaces that have enhanced stability compared to their thiol-based counterparts. The utility of NHCs to form such robust self-assembled monolayers (SAMs) was only recently recognized and many fundamental questions remain. Here we investigate the structure and geometry of a series of NHCs on Au(111) using high-resolution X-ray photoelectron spectroscopy and density functional theory calculations. We find that the N-substituents on the NHC ring strongly affect the molecule–metal interaction and steer the orientation of molecules in the surface layer. In contrast to previous reports, our experimental and theoretical results provide unequivocal evidence that NHCs with N-methyl substituents bind to undercoordinated adatoms to form flat-lying complexes. In these SAMs, the donor–acceptor interaction between the NHC lone pair and the undercoordinated Au adatom is primarily responsible for the strong bonding of the molecules to the surface. NHCs with bulkier N-substituents prevent the formation of such complexes by forcing the molecules into an upright orientation. Our work provides unique insights into the bonding and geometry of NHC monolayers; more generally, it charts a clear path to manipulating the interaction between NHCs and metal surfaces using traditional coordination chemistry synthetic strategies.
more »
« less
- Award ID(s):
- 1807654
- PAR ID:
- 10104434
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 10
- Issue:
- 3
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 930 to 935
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
N-heterocyclic carbenes(NHCs) have garnered the attention of material scientists and chemists for their tunable electronic properties. NHCs anchored to surfaces have attractive features and may provide new applications that traditional self-assembled monolayers (SAMs) have yet to be employed. In-fact, NHCs have been utilized to functionalize surfaces to tune reactivity and/or selectivity. However, the underlying mechanisms to control the surface-adsorbate interaction is still in its infancy, especially for SAAs. Herein we utilize periodic non-local density functional theory (DFT) calculations to better understand how changing the NHC backbone influences the bonding between the surface and the adsorbate with the end goal to utilize a relatively new mechanism to store hydrogen.more » « less
-
The exceptional stability of N-heterocyclic carbene (NHC) monolayers on gold surfaces and nanoparticles (AuNPs) is enabling new and diverse applications from catalysis to biomedicine. Our understanding of NHC reactivity at surfaces; however, is quite nascent when compared to the long and rich history of NHC ligands in organometallic chemistry. In this work, well-established transmetalation reactions, previously developed for NHC transfer in homogeneous organometallic systems, are explored to determine how they can be used to create carbene functionalized gold surfaces. Two classes of NHCs, based on imidazole and benzimidazole scaffolds, were tested. The resulting AuNP surfaces were analyzed using X-ray photoelectron spectroscopy (XPS), laser desorption ionization mass spectrometry (LDI-MS), and surface-enhanced Raman spectroscopy (SERS). Reaction of either a Au( i ) or Ag( i ) isopropyl benzimidazole NHC complex with citrate-capped AuNPs yields, in both cases, a chemisorbed NHC that is bound through a Au adatom. Theoretical calculations additionally illustrate that binding through the Au adatom is favored by more than 10 kcal mol −1 , in good agreement with experiments. Surprisingly, reaction of Au( i ), Ag( i ), and Cu( i ) diisopropylphenyl imidazole NHCs do not follow the same pattern. The Cu complex undergoes transmetalation with very little deposition of Cu; whereas, unexpectedly, the Ag complex foregoes transmetalation and instead adducts to the AuNP with retention of the Ag–C bond. Theoretical calculations illustrate that the imidazole ligand affords significant dispersion interactions with the gold surface, which may stabilize binding through the Ag adatom motif, despite its less favorable bonding energies. Taken together these results suggest a unique ability to tune the reactivity by changing the carbene structure and raise critical questions about how established transmetalation reactions in organometallic chemistry can be applied to form NHC functionalized surfaces.more » « less
-
Silver–NHC (NHC = N-heterocyclic carbene) complexes play a special role in the field of transition-metal complexes due to (1) their prominent biological activity, and (2) their critical role as transfer reagents for the synthesis of metal-NHC complexes by transmetalation. However, the application of silver–NHCs in catalysis is underdeveloped, particularly when compared to their group 11 counterparts, gold–NHCs (Au–NHC) and copper–NHCs (Cu–NHC). In this Special Issue on Featured Reviews in Organometallic Chemistry, we present a comprehensive overview of the application of silver–NHC complexes in the p-activation of alkynes. The functionalization of alkynes is one of the most important processes in chemistry, and it is at the bedrock of organic synthesis. Recent studies show the significant promise of silver–NHC complexes as unique and highly selective catalysts in this class of reactions. The review covers p-activation reactions catalyzed by Ag–NHCs since 2005 (the first example of p-activation in catalysis by Ag–NHCs) through December 2022. The review focuses on the structure of NHC ligands and p-functionalization methods, covering the following broadly defined topics: (1) intramolecular cyclizations; (2) CO2 fixation; and (3) hydrofunctionalization reactions. By discussing the role of Ag–NHC complexes in the p-functionalization of alkynes, the reader is provided with an overview of this important area of research and the role of Ag–NHCs to promote reactions that are beyond other group 11 metal–NHC complexes.more » « less
-
Abstract The discovery of NHCs (NHC = N‐heterocyclic carbenes) as ancillary ligands in transition‐metal‐catalysis ranks as one of the most important developments in synthesis and catalysis. It is now well‐recognized that the strong σ‐donating properties of NHCs along with the ease of scaffold modification and a steric shielding of the N‐wingtip substituents around the metal center enable dramatic improvements in catalytic processes, including the discovery of reactions that are not possible using other ancillary ligands. In this context, although the classical NHCs based on imidazolylidene and imidazolinylidene ring systems are now well‐established, recently tremendous progress has been made in the development and catalytic applications of BIAN‐NHC (BIAN = bis(imino)acenaphthene) class of ligands. The enhanced reactivity of BIAN‐NHCs is a direct result of the combination of electronic and steric properties that collectively allow for a major expansion of the scope of catalytic processes that can be accomplished using NHCs. BIAN‐NHC ligands take advantage of (1) the stronger σ‐donation, (2) lower lying LUMO orbitals, (3) the presence of an extended π‐system, (4) the rigid backbone that pushes the N‐wingtip substituents closer to the metal center by buttressing effect, thus resulting in a significantly improved control of the catalytic center and enhanced air‐stability of BIAN‐NHC‐metal complexes at low oxidation state. Acenaphthoquinone as a precursor enables facile scaffold modification, including for the first time the high yielding synthesis of unsymmetrical NHCs with unique catalytic properties. Overall, this results in a highly attractive, easily accessible class of ligands that bring major advances and emerge as a leading practical alternative to classical NHCs in various aspects of catalysis, cross‐coupling and C−H activation endeavors.more » « less